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PREFACE

This manual, describing the computerized coaxial injection combustion

model, was prepared in support of the continuing JANNAF effort to

. develop systematic performance prediction techniques.

In I_65, the Interagency Chemic_l Rocket Propulsion Group (ICRPG) Work-

ing Group was formed for the purpose of improving and recommending method-

ology suited to eventual adoption as national standards for the analytical

and experimental evaluation of the perform.ance of liquid propellant rocket

engines. By 1968, the _'orking Group [made up of members from government,

industry, and academia) had:

Developed a physical model of rocket engine thrust chamber performance

Selected computer programs to perform the mathematical calculations

required by the physical model

Developed recommended practices for test measurements

Developed a model for uncertainty in measurements

Documented the effort in three procedures manuals {CPIA No. 178, 179,

and 180) and several computer program manuals.

In 1968, the ICRPG was reincorporated as part of the Joint Army-Navy-NASA-

l Air Force [JANNAF) Interagency Propulsion Committee. The major JANNAF
!

. achievement to that time was the publication of standard Thermochemical
Tables for rocket exhaust products. The ICRPG Performance Standardization

b
Working Group became the JANNAF Rocket Engine Performance Working Group.

l
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Other J_NNAF Working Groups cover such areas as Combustion Instability

(originallypart of the ICRPG), and Air-Breathing Propulsion and Environ-

mental Effects. Each Working Group has a four-person steering committee

(each Government agency being represented), a program manager to coordinate

the Group's efforts, members from Government agencies, and participants

from outside the Government.

Since the reinstitution of the Rocket Engine Performance Working Group in

1968, this Working Group has:

Extended the methodology from the thrust chamber to the entire engine

Developed a detailed injector analysis procedure to replace the earlier

ICRPG method

Developed a rigorous step-by-step analysis procedure and a simplified

procedure using efficiency definitions

Replaced the approximate boundary layer model with a more rigorous

model

Established new overall procedures and documentation consisting of a

Performance Prediction and Evaluation Manual, a User's Guide based

upon experience pertaining to the manual and recently a CPIA publi-

cation (245) dealing with JANNAF Rocket Engine PerformaJtceTest Data

Acquisition and Interpretation.

Continued to update and improve all methods and procedures.

The documentation of the coaxial injection combustion model contained in

this manual is indicative of constant updating and improvement to JANNAF

performance prediction procedures. Specifically, this report describes the

Iv

J

J
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use of a reference computer program developed for the rigorous analysis

of rocket thrust chambers with coaxial propellant injection. An earlier

version of the model described herein was referenced in CPIA Publication

245 (page 13.2B) as the CSS model, a "coaxial element model that replaces

LISP and 3DC for coaxial elements". This report describes an improved

computer program which supersedes CSS. The improved model is named CICM.

This report has been prepared in fulfillment of contract NAS8-29664 from

the National Aeronautics and Space Administration. The effort was com,o

pleted during the period from 2 May 1973 to 15 April 1974. Mr. K W. Gross

of the NASA Marshall Space Flight Center was the Technical Monitor. The

Rocketdyne Program _nager was Mr. L. P. Combs, initially, and later

MI. J. Friedman. Dr. Robert D. Sutton served as the Rocketdyne Project

Engineer.

v
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INTRODUCTION

The performance of a thrust chamber depends greatly on the combustion

and injection processes including atomization, evaporation, and mixing,

The individua2 processes are highly complex, especially for coaxial

liquid-gas streams. Over a period of several years, Rocketdyne has

developed an analytical model to simulate these processes; the model

has been used extensively in the Space Shuttle engine development effort.

The JAN_AF Performance Standardization Working Group has directed the

development of reference computer programs for evaluation of liquid

rocket engine performance. Current capability includes the ability to

simulate the behavior of various injection elements such as doublets,

triplets, pentads, showerheads, etc., for liquid-liquid propellants

with the JANNAF Distributed Energy Release (DER) computer program.

However, the ability to simulate coaxial liquid-gas jet injection and

combustion was needed in the J,kNNAF methodology.

The objective of this technical effort was to provide NASA/MSFC with an

operational FORTRAN IV computer program and associated documentation

apnlicable to analysis of coaxial injection and combustion of liquid-gas

propellants in the Space Shuttle engine. In addition, the computer

program was to be structured to fit _nto the standardized J&_AF evalu-

ation procedure, so that other engine systems using coaxial injection

could be analyzed. These objective,, have been met.
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The effort was divided into two tasks. The first concerned improvements

_.o the existing Rocketdyne model: program modularization, improvement

of the numerical analysis, modification of program tables, changes to

the input and output format, and inclusion of punched card output compat-

ible with the JANNAF DER program input requirements. The second task

involved documentation of the model.

This report has been prepared to provide sufficient information to allow

KSFC to adequately ,_se the model. Thi_ report includes overall descrip-

tions of the equations, the overall program and its subroutines (includ-

ing flo_ charts that emphasize the intecactions of the subroutines rather

than the detail of their internal structure), the program input and out-

put, internal checks, guidelines, and error analysis.

SCOPE &NDLIMITATIONS OF TIlE

COMPUTERPROGRAM(CICM)

This report describes a very comprehensive and complicated computer pro-

gram to predict the combustion within rocket thrust chambers of gas/liquid

propellants injected from coaxial elements. The model is capable, when

used with applicable intra-element mixing data, of predicting the perform-

ance of any size of concentric coaxial element using any propellant

combinat ion.

The p_gram is designed to use the injector and chamber configuration, the

I propellant and the operating conditions as the input. In a single run, the

program will calculate the state of flow conditions within each element's

"cup" Cvolume formed by recessing the oxidizer propellant delivery post

2
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into the fuel sleeve). The calculated flow conditions include the

important fuel side "cup':pressure drop. This pressure loss Js

defined to be the difference between the pressure in the fuel

annulus gai: compared to that at the injector face. The program

then automatically stores and uses all data as input to the chamber

calculation sequence. If the injector has more than one element de-

sign (or zones reprenenting a group of elements each having similar

inlet conditions) the model performs automated repetitive analysis

until the element (zone) with the longest predicted jet length is

located. At .his point spray gas information from a]l of the elements,

or groups of elements, are internally input into an auxiliary program

that organizes the data, in terms of punched card output, for sub-

sequent analyses of the completion of combustion, etc. via other

computer programs (J;_NAF DER,et seq.). The zones of element inlet

conditions (i.e., injector feed ma!dJstribution) must of course be part

of the input to DER.

This rocket engine combustion model is unique because it calculates both

the rate of atomization of the injected liquid jet, resulting from the

sheer force between the jet and the surrounding gas, and the axially

varying mean droplet size produced by the atomization. Thus, it does

i not require experimentally determined correlations for the droplet size

distribution, which are roquired in other models.

Integration of the computer program into the DER methodology was formulated

after considering many alternative methods for handling intra-element mixing.

It was 4ecided that the most accurate way to compute the total effect of

this phenomenon is to divide the spray and gas flows for each coaxial element

3
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zone into multiple mixture ratio sub-zones. The manner in which the

element zones are furtl_er subdivided to simulate the intra-element

mixing loss is deterndned from cold flow measurements. These cold

flow measurements relate the element geometry and flow condition to its

mixing efficiency. Such information may be input to the CICM program

in terms of mass fraction as a function of the total fuel and oxidizer

flowrate for each element zone. This analysis is used in an auxiliary

program that interfaces CICM with the streamtube portion of DER.

The streamtube portion (STC) of DER must, of course, be provided with

more information than the punched card output from CICM provides. In

essence, STC contains multiple concentric streamtubes reFresenting each

zone and the further breakdown of each zone into additional concentric

streamtubes to account for intra-element mixing efficiency. Although

mass fraction as a function of the fuel and oxidizer flowrates for each

element zone is calculated, the user must decide, when inputing DER, which

spatial concentric streamtube to use to represent each zone, and further,

what mixture ratio profile to assign to the additional concentric streak-

tubes within each overall zonal streamtubes. These same decisions are

required for analysis of other element types when using the JANNAF DER

(STC) program and, therefore, they do not represent additional complexity.

! The computer program also has capability for bypassing DER (STC) entirely

and continuing the spray/gas combustion computations for single streamtubes

to the nozzle throat. In such a case the area of the streamtube varies as a

constant proportion of the total cross-sectional area, whi=h is usually based

! _ ...... 11 II IN II ItJJ_ _= " "
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on the ratio of element flowrate to total flowrate. Unlike DER (STC), in

constant area sections of the chamber the streamtube area does not change,

rather it retains a constant area. This simplification occurs because only

one streamtt_beis being considered, whereas in STC many streamtubes are
J

considered and adjustments are made to their individual areas so that they

sum to the chamber area.

All physical properties in the program are supplied by generalized property

table subroutines for all droplet liquid and vapor, combustion gas, non-

burning gases and droplet film propcrties. The program utilizes an advanced

droplet vaporization and heating model which includes real gas effects re-

garding vapor-liquid equilibrium and solubility of external gases into the

droplet. To describe these non-ideal gas effects, the Redlich-Kwong equa-

tion of state and the mixing rules of Chueh and Prausnitz* have been utilized.

Rocketdyne has developed separate programs to calculate the non=ideal effects

required in the CICM program. Although the program has been generalized to

accept any propellant combination, non-ideal properties have been supplied

only for the LO2/GH2 propellant combination. Additional effort would be

required to supply properties for other propellants.

During the current effort, the non-ideal physical properties for the LO2/GH2

i propellant system were evaluated to ensure that the program is adequate for

computations to at least 5000 psi. Non-ideal effects (where applicable) of

t temperatures from lO0°R to lO,O00°R have also been included,

*Chueh, P. L., and J. M. Prausnit,, "Calculation of High-Pressure Vapor-

Liquid Equilibria," Industrial and Engineering Chemistry, Vol. 60, ]
1968, pp. 34-S2,

i
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As noted earlier the program contains an advanced droplet vaporization

_. and heating model (similar to, but an improvement on, that contained in

the current DER/STC droplet heating program). This model was developed

to permit analysis of both subcritical and supercritical temperature and

pressure conditions. The model predicts continuous variation of burning

rate with pressure. It computes a "wet bulb" temperature for subcritical

pressures while allowing the droplet to continue heating through and past

the critical temperature for supercritical pressures.

The portion of the program that deals with the "cup" region (that volume

created by recessing the oxidizer post within the fuel sleeve upstream

of the injector face) permits analysis of both non-burning or ignited gas

flows. Ignition of the injected gas (usually fuel) and atomized and

vaporized oxidizer (the liquid jet) is believed to occur primarily as a

result of recircu!aticn of hot gas which is promoted by a highly flared

fuel sleeve (such as on the J-2 and J-2S). )qith such a flare, an igni-

tion front is established across the gas flow path at an angle determined

by the cup gas propellant flow and flame speeds. Ignition is considered

to occur at the beginning of the flare on the fuel sleeve and propagates

downstream toward the liquid jet. For a non-flared cup, a similar analysis

is used for ignition of non-burning gases as they enter into the chamber.

Ignition occurs by local recirculation of hot gas around or between elements.

Determination of the chamber gas flame speed is not exact; generally a w]ue

of 600 feet/second is recommended.
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Other ignition mechanisms are possible but no high performance coaxial

i injected engine is known to have been (or is ever likely to be) built

which has a gas injection velocity low enough to allow a turbulent flame

i
to propagate upstream into the cup and maintain combustion there.

i Similarly, no engine is known to have been built or designed with gas

injection temperatures high enough to cause auto-ignition to occur.

Even in the case of the SS_, tests have been made with hydrogen-rich

gas injected at 2000°R Cconsiderably hotter than that planned for the

actual engine) without indications of cup ignition. Ignition is un-

likely because the induction time for auto-ignition at these extreme

conditions is some 30 times greater than cup gas residence time.

Additionally, the computer program has been modified from previous

versions to improve the calculation of the "cup" pressure drop. With

this modification, the pressure at the downstream end of the fuel gap

annulus is predicted rather than at the propellant contact point dosm-

stream of the oxidizer post. This change is of significant importance

to the accurate prediction of the overall fuel pressure drop, fuel mani-

fold to injector face. The program will accurately predict the pressure

recovery or loss (if any) in the flow from the annulus to the point of

propellant contact, as well as the pressure drop from that point to the

injector face. Three different methods are provided to compute the pres-

I sure differences between the point of contact and the fuel annulus.

These three methods are discussed in detail under the General Program

Outline section of this report. Of these three methods, one is reconmended,

but the others may be used with easily made changes to certain atomization

rate and dropsize diameter correlation inputs which depend on the method

7
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selected. Flame speed effects, whether iq the cup or in the chamber,

are relevant only with respect to use of the third (presently recom-

mended) method. i

The primary limitation of the program is its essentially one-dimensional

nature. Within any streamtube at a given axial location, the droplet

spray and gas flow are considered uniform within the cross-section.

Also, the program does not directly consider secondary droplet breakup.

(Only the initial atomization rate and mean dropsize variation as a

result of vaporization between axial steps are calculated.) However,

neither of these restrictlons seem to have any significant influence on

the ability to model observed behavior.

Non-uniformities are handled by the intra-element mixing technique des-

cribed earlier. Fox'the cup region, the method of predicting the atomi-

zation rate and initial dropsize is believed to account implicitly for

what secondary droplet breakup occurs because the rates and dropsizes

are adjusted to obtain the best values of model parameters based on

experimental information. The same statement can be made concerning

the chamber, although for this region computations indicate secondary

breakup is far less likely. In the chamber, the droplets are larger ini-

tially because the flow Js not constrained by the cup fuel sleeve walls.

ilowever, the computations indicate that the droplets rapidly vaporize

in the surrounding hot combusting gas and are rapidly accelerated by

droplet drag to a critical relative speed where further breakup (beyond

the initial atomization) does not occur.
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An additional restriction of the program is its inability to analyze

coaxial injectors incorporating propellant swirl.
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GENERAl.PROGRAMOUTLINE !

Over a period of several years, an integrated method for analyzing bipropel-

1ant liquid spray combustion has been developed and applied to steady-state
r

wall heating and performance analyses (Ref. I, 2, and 3). The approach was

developed at Rocketdyne under a series of contracts supported by the Air Force

and by NASAand was guided by J_NNAF Performance Working Group recommendations
!

and requirements. For injection elements other than coaxial elements, this

method is based on initializing the combustion field for the entire combustor

Cot a representative geometric segment of it) at a plane located a short

distance downstream of the injector by summing the spray flux contributions

from individual injection elements to each of a large number of flow-net mesh

points. Individual element behavior is described analytically by empirical

correlations of data from single-element, cold-flow experiments. Subsequent

to that, combustion is described in a rapid combustion zone (if strong trans-

verse gradients are produced) followed by a streamtube combustion zone, as

shown in Fig. 1. The computer program CRef. 3) necessary to analyze this

flow field is schematically illustrated in Fig. 2.

To date, this approach has been primarily applied to liquid-liquid systems.

_hile cold-flow characterization of gas-liquid injection provides valid empirical

correlations for marly injector types, this approach may not be sufficiently

accurate for injector types that exhibit strong coupling between the atomiza-

tion processes and the spray combustion or vaporization processes. Thi.= is

particularly true in regard to the dropsize distribution and location at which

spray droplets are formed. Coaxial jet injection is subject to such coupling

i in at least two ways: (1) gas-liquid interaction in any elemental recesses

!
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Figure 2. Schematic of DER Computer ProEram for Performemce
Analysis

11

#

1974024110-022



_L

I (e.g., such as recessing the liquid propellant injection post) accelerates

i the initial atomization, produc¢,_finer sprays, and increases injection
[.

I pressure losses and (2) completion of jet atomization is accelerated and
I

i_ finer sprays are produced by the buildup of axial combustion gas velocity.

Therefore, it was anticipated that some form of coupled atomization-

combustion analysis of individual elements would be required for initializing

the more global chamber combustion analyses. This is schematically implied i

in Fig. 3. The jet atomization may extend considerably into the combustion

chamber, interacting strongly with (and producing) the surrounding

combustion flow field. Thus, a jet atomization-combustionzone would

replace the injection-atomizationand rapid combustion zones of Fig, I.

This requires an addition or alteration to the present computer program

of Ref. 3, such as shown in Fig. 4.

The Rocketdyne-developed coaxial injection combustion model (CICM) predicts

the atomization, mixing, and (if present) combustion within the coaxial

element recessed cup as well as the jet atomizationand combustion within the

combustion chamber. The basic program analyzes a single coaxial element

or ,.elementzone" composed of similar elements which can be considered

to be a single element. If manifold feed maldistribution is present (or

if some of the elements differ in design) an internal multiple analysis

is performed for each element zone that represents a different operating

condition. £ach element zone is assigned its proper proportion of the chamber

area and propellant flow. These element zones may be further divided

into subzones to include the effects of intra-elementmixing losses.

12
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ANALYTICAL FEATURES OF SINGLE-ELEMENT, COAXIAL

INJECTION COMBUSTION

As in most combustion analyses, inputs are required regarding the propel-

lants' physical and thermochemical properties, equilibrium combustion pro-

ducts, and injector, chamber and nozzle designs. The analysis of the

injector element, as far as prediction of the vapori=ation efficiency is

concerned, may proceed from a flow field formulation such as that depicted

in Fi R. 5. The element shown here is flared such as on a J-2 engine. (Most

elements are not flared.) Only three axisymmetric flow fields need be con-

sidered, as shown: (1) the liquid jet, (2) the spray/gas-burning (or non-

burning) flow field surrounding the jet, and (3) bleed flow through the

injector face, "Rigimesh flow", surrounding the gas/spray flow field and

mixing with it. The flow within each of these fields is taken to be quasi-

one-dimeusional (i.e., the radial mass flux concentration and pressure

gradients are assumed to be insignificant).

The actual analysis begins with initial contact between gas and liquid jet

(Fig. 5). This contact may, for some injectors, occur in the cup formed by

recessing the liquid oxidizer injection post. The conditions of this initial

contact depend on the method chosen to describe the fuel flow from the fuel

annulus gap to the liquid jet. In this region, the constraXned high-

velocity gas stream begins the initial stripping and atomization of the

jet. Small drops are formed and, depending on local flow and geometric

conditions (i.e., gas temperature, velocity, oxidizer vapor concentra-

tion, pressure and flame speeds), the propellants may initially ignlte
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Figure 5. Concel_ual ._odelof Uni£ormly Flowing Coaxial
Injector Element
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within the cup. B%ether or not this occurs depends either on hot gas

recirculation in the flare (if the element is flared) or on kinetic

ignition delay times. Even if burning does not occur in the cup region, the

recess of coaxial injectors has a significant effect on subsequent

atomization and combustion in the chamber, thereby _ntrolling the per-

formance efficiency. In addition, significantcup burning often radir_lly

changes injection delta pressures and injection temperatures and must be

accounted for in initial design.

The program is based on the use of conservation equations for both the

liquid jet and combustion gas/spray flow in the cup region and chamber

flows. They include spray droplet atomization,heating, burning, and

droplet drag. ;lear transfer to tl,e walls, injector fac:, and liquid jet

are neglected. In the chamber, uniform radial pressure is assumed at each

axial location and the sum of the areas of the liquid jet, combustion/

spray field and "Kigimesh flow" _st fill the portion of the chamber area

allotted to the element. In the absence of "Rigimesh flow", the

combustor flow field emanating from an element is allowed to expand at

constant pressure until the flow fills the "chamber". This is not an

assumption bur represents the limit of axial pressure variation as the

ex':ernal(Rigimesh)flow is reduced to zero. These equations are described

more fully later in this report.

16
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Equations are also included which describe liquid jet stripping rates and

drop-size distribution. This is the only known model which calculates

stripping rates, atomization, and combustion of liquid jets in gas-liquid

coaxial injectors. The current model represents a significant advance

over the first attempt at modeling coaxial injectors (Ref. 4). The model

does not require input data regarding dropsize information because the

distributien is calculated as a function of flow field conditions and jet

axial position. The controlling parameters of the model are: (I) the

local stripping rate of the liquid jet, MA, (2) the local mean drop size

being produced when HA is -tripped from the jet, D, (3) the droplet

heating and burning rates, (4) the droplet drag coefficient, and (S) for

the chamber flow, the rate of mixing of the external "Rigimesh flow" (for

low percentage flow, this parameter will be shown to be of little importance).

A correlation for the droplet drag coefficient was utilized which was

obtained for accelerating, burning droplets in a convective flow field

(Ref. 5). _hile it lacks particle interaction effects, it appears to be

fairly accurate.

The rate of mixing of the "Rigimesh flow" is important only if that flow

is abnormally large. This mixing of the "Rigimesh flow" is not accomplished

by turbulent mixing of striated parallel gas flows but is primarily

"caught" or entrained between adjacent elements. As combustion of the spray

!
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proceeds, the reacting flow field expands radially as it progresses

downstream as computed from the entire interrelated set of conserva-

tion equations describing each flow field. The assumption of uniform

pressure at each axial location is utilized to iteratively solve the

equations. These iterations, coupled with the proportioned chamber area

constraint, determine the pressure level (pressure varies axially but

not radially), velocit/ and area of each flow field. Computations have

been performed for extremes in "Rigimesh flow" mixing from complete mix-

ing to no mixing. Re:_ults show that rapid spreading of the comhusting

flow field from adjacent elements (with the presence of "Rigimesh flow",

mixing or not) causes a decreasing axial pressure. The "Rigimesh flow"

accelerates rapidly so that, within approximately 2 inches downstream from

the injector face, its flow area is reduced to only approximately 3 percent

of its injection area. Because this area is in the form of an annulus

trapped between elements, the average thickness of this annulus (for typical

injectors) is on the order of 0.01 inch. Thus, the "Rigimesh flow" allows

a single turbulent eddy to sweep the flow into the adjacent element flow

fields. Consequently, wSth normal emo_ts of "Rigimesh flow" (approxi-

mately 5 percent of the total fuel flow), the axial variation of the

expansion area of the combusting flow field of adjacent elements is

relatively unaffected by the pre_ence of the "Rigimesh flo_". Hence, l:he

rate of mixing of the "Rigimesh flow" is not of importance and is usua:qly

taken Co be a linear function between the injector face and the 95-percent

closure point of two adjacent elements computed under no Rigimesh mixin_

18
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conditions. If this approach requires too much computer time, an

arbitrary do_mstream distance may be chosen with no significant change in

accuracy. Naturally, when the axial rate of mixing is prescribed, the

mixed "Rigimesh flow" is spread uniformly over the cross-sectional area

of the element's flow field and becomes part of the fuel to be reacted.

An important aspect of this program was the development of a continuous

sub- and supercritical burning (and heating) rate drop model that allows

steady-state combustion analyses and performance predictions to be made

to > 5000 psia. The equations are similar to the El Wakil equations (Ref. 6).

However, the boundary condition was changed to allow the existence of an

external mass flux (i.e., surface regression effects of the droplet).

This change allows smooth computation through the critical point.

Additionally, high-pressure effects due to the presence of other gases

were included for the computation of the vapor surface mole fraction and the

"heat of vaporization". This involved use of the Redlich-Kwong equation

of state, fugacit/ relationships, and solubility effects of the external

gas in the droplet (Ref. 7).

Equations for the jet stripping rate and drop size production are pre-

sented below:

A. Stripping Rate

[ 22]l/S
. /

t
Atomization
Coefficient

: 19
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B. Mean Drop Size

pgUr
Drop Size
Coefficient

where

D. = diameter of jet
J

U = expanded relative gas velocity in cup {or chamber)
r between gas and spray

Z = axial location

pg _ gas density

Pj = jet density

_j = jet viscosity

a. = jet surface tension
J

The equations include an atomization coefficient, CA, and a drop size

coefficient, BA. It is not expected that the values for BA and CA be

the same inside the cup region as out in the chamber since the fuel is

not constrained in the chamber as it is in the cup. Thus, the values of

BA and C_ in the cup may reflect droplet breakup, etc, However. the

equations are general in nature and the values of BA and CA determined

2O
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for either regime have been found to be the same for an)' engine operating

condition. This is sign_.ficant in that the extremes range from burning

to non-burning propellant cup conditions, various chamber shapes, etc,,

and even different propellants.

Methods of evaluating CA and BA for the cup and chamber regions are

required and the validity of these equations has been verified.

BA and CA for the cup region were determined by analytical comparison of

four to seven different cases where the pressure drop from the end of the

fuel gap annulus to the injector face (cup pressure drop) had been measured.

Four of these cases were from subscale firings of LOX/hydrogen coaxial

injection engines: (1) the SSME straight oxidizer post preburner, Pc =

1500 psia; (2) the SSME tapered oxidizer post preburner, Pc = 1500 psia;

(3) the stability preburner-like uni-element motor, Pc = 500-1000 psia, in

which the delta P between the fuel gap annulus static pressure and the

injector face pressure was measured directly; and (4) the SSME uni-element

tests, Pc = 1500 psia which consisted of a uni-element preburner and a uni-

element main injector containing an oxidizer post capable of being recessed

from flush mounting to 0.3+ inch from the injector face. The remaining

cases were full-scale firings of three similar engines also using LOX/GH 2

propellants: (I) the J-2, (2) the J-2S, and (3) a variable-oxidizer-post-

recessed aerospike (segment) engine, Pc = 750 psia. The J-2 and J-2S are

the only ones in which the propellants ignite and burn within a flared

fuel cup sleeve.

21
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The number of experimental cases used to determine BA and CA depended i1!

ion the method used to compute the pressure profile from the fuel gap

annulus to the point of propellant contact. At least two sets of data

are needed to determine BA and CA; these resultant values are then used

to predict the cup APs of the remaining engines. The adequacy of the

chosen BA and CA is determined by comparing predicted and measured cup

AP values. Acceptable accuracy has been taken to be ±20 percent (except

at very low cup AP's where predicted differences of only a few psi can

result in apparent high percentage deviations).

Three methods have been used for computing total cup del_a pressures

and for obtaining BA and CA. This computation concerns the process

througl_ which the gas is assumed to flow from the gap annulus into the

recessed portion o_ the injector element. In the first of these methods,

the gaseous fuel was assumed to flow around the pest thickness and fill

the entire annulus between the liquid jet and the fuel sleeve walls. The

liquid jet was not allowed to expand, and therefore does not have the

bulge as shown in Fig. S. The fuel pressure in the annulus gap is calculated

by assuming that the fuel static pressure did not change in the expansion

from the annulus gap to the cup. BA and CA for the cup region were

determined by comparison of predicted and measured cup AP values for the

J-2 and J-2S.

22

1974024110-033



Sets of values of BA and CA were calculated that yielded the correct

pressure drop for each engine. R%en these were plotted, they produced a

cross point of two curves that was sharp and yielded the only values of BA

and CA that satisfied the pressure drop of both engines. It was necessary

for these calculations to assume burning to occur within the cup. A

nonburning assumption caused over 90 percent of the jet to be 8tomized in

the 0.200-inch recess of this cup to yield the correct pressure drop;

clearly this was a nonrealistic assumption. Additional engine cup AP data

were then used to verify the validity of the chosen BA and CA . Although

this method of obtaining BA and CA (combined with the fact that ignition

of the flowing gas was assumed to occur at a cross-sectional plane just

downstream of the oxidizer post) gave satisfactory agreement with most

existing cup pressure drop data, it does not properly conserve gas momentum

and, therefore, was considered unsatisfactory. Further, this technique

failed to properly predict the directly measured cup _P's of the stability

preburner like-element injector.

The second method involved the use of an iterative procedure to predict

a "sudden expansion" of both the gas and liquid (requiring the equations

of motion for both propellants to be satisfied) with compressibility

factors being used to allow for nonideal gas behavior. The iteration was

used to find the allowable areas of expansion for the two propellants

subject to the constraint of the total cup flow area. As expected, the

results indicated that as the thickness of the LOX post is increased the

pressure recovery approaches zero. Again values for BA and CA were

obtained from the J-2 and J-2S data allowing ignition to occur as in the

previous case.
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It became evident at this point that ignition of the cup gases upstream

of the flare was not possible because of the high gas velocity in the

unflared section of the cup. However, assuming ignition to occur at a

cross-sectionalplane located at the beginning of flare, failed to

produce a common solution when the BA'S and CA'S wer_ plotted. (The

assumption that ignition occurred in the flare was 21so used to obtain a

set of values for BA and CA with the first method but the change in the

results was insignificant.) Although the proper values for BA and CA

could not be adequately defined by this second method, comparisons were

made to other engines. Using this approach the measured subscale SSM£

preburner total manifold-to-injectorend pressure drop was accurately

predicted, llowever,when predicted pressure drops were compared with

other available large engine cup AP data the comparison was again less

than satisfactory. Further, the trends of the directly measured cup

pressure drop of the subscale preburner-likeunielement firings could

not be properly predicted with this method.

The third method corresponds to a significantly different concept of

the flow behavior within a recessed oxidizer post coaxial injector. The

previous methods considered the gas and liquid static pressures to be

equal (and radially uniform) at the end of the oxidizer post. Consequently

the radial liquid and gas expansions predicted by the second method

always occurred within the radial thickness of the oxidizer post.

However, base bleed analyses of the injection process with, e.g., a

coaxial element, suggested that the fuel pressure and oxidizer pressure

(and the intermediate pressure at the tip of the post) may not be equal

, 24
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at the end of the post and that adjustment of the streams to reach a

radially uniform pressure would occur. Further investigation led to the

concept previously illustrated in Fig. 5. The liquid jet pressure at

the end of the oxidizer post is believed to be initially less than that

of the surrounding gas. Relaxation of the radial pressure _rofile to

a uniform pressure occurs due to initial expansion of the liquid jet

flow area and subsequent contraction of the fuel flow area. Consequently

the liquid jet flow gains static pressure and the gas flow loses static

pressure until the pressure is radially uniform. In the analysis this

initial liquid expansion is allowed to occur in approximately one

oxidizer post thickness downstream from the post, Propellant contact

begins at the point marked 1 in Fi_. 5 and subsequent atomization of the

liquid begins. Total cup _P is still defined as the difference between

pressure in the fuel gap annulus and injector face chamber pressure.

To compute BA and CA for this third method at least four sets of engine

data are needed, because the equations used to predict the liquid area

expansion also contain two empirical constants. Actually, data from

all of the engines were used to obtain a "best-fir" correlation for

injector cup pressure losses under non-burning cup conditions, as shown

I on Fig. 6.

!
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Figure 6. Injector Cup Pressure Loss Correlation
(Nonburnl ng Cups)
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Conservation and correlation equations were used to calculate the

liquid jet area (and the contracted area of the fuel). Because the

manifold-to-injector-face pressure loss for the fuel has the most

significant effect on engine design, the conservation equations (mass,

momentum, energy, and state) for the fuel were applied to calculate

this fuel flow field from the end of the post (i.e., from the fuel gap

annulus) to the point of propellant contact. _e area of the contracted

gas flow was correlate& _:: the following equation:

)= 0.982 * 0.0337 Ln post I.D.

A_g _fuel sleeve

where Acp is the area of the gas at the initial stream contact point

and AANN is the area of the fuel gap annulus.
g

In addition, the constraint was used that the sum of the areas of the

gas and liquid at the contact point equaled the total area of the cup

(fuel sleeve). Simultaneous with the determination of the two constants

in the above equation, the cup BA and CA values were also determined by

' computing cup pressure losses downstream from the propellant contact

point.
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The BA and CA values for this were determined from non-burning cup

gas data. Resulting were the first values for cup BA and CA that yielded

predicted pressure losses in agreement with data from the stability uni-

element injector. Because the values for BA and CA were obtained

assuming a non-burning cup, the J-2 and J-2S cup pressure losses were

computed by assuming cup gas ignition to occur at a conical surface

based at the upstream edge of the flare on the fuel sleeve and sloping

downstream toward the liquid jet. Also, because BA and CA and the J-2

and J-2S pressure losses are all known, this method allowed the flame

speed in this reacting two-phase LOX/hydrogen flow to be predicted. The

value obtained for the J-2 was 382 ft/sec. The f_ame speed for the

3-2S was predicted to be slightly greater than its gas velocity at the

beginning of the flare. Consequently, the latter flame speed was reduced

to this gas velocity. As a result, the predicted cup pressure loss

for the J-2S aoes not precisely match the measured loss (as shown in

Fig. 6). Nevertheless, this third method is preferred and is reconunended

over the first two methods. It is believed that as more accurate

non-burning cup gas pressure loss data becomes available, it will be

possible to adjust BA and CA to allow prediction of the measured loss

within +10 percent.

i
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Although a nonplanar ignition front has been introduced, the program is

still one-dimensional. Flame propagation is computed using an

"averaged" or pseudo mixture ratio in the gas flow field region

surrounding the liquid jet. This region is composed of unburned

propellant (gas flow near the jet that has not yet passed through the

"flame front") and burned propellant which has passed through the flame

front. To compute the mixture ratio under such quasi-two-dimensional

conditions the folluwing equations were utilized.

2

ocx- I'i'; 1
_YI Yjet(x)/

and

Vf
--- Ax

Yf(x H�8�=)'f(x) VI

where

x • axial distance

MR(x) • the pseudo mixture ratio at axial location x

_RI • the mixture ratio at the ignition point

Yl " the radial distance from the centerline of the liquld

Jet to the ignition point on the fuel sleeve

! Yf(x) • the radial distance from the centerline of the liquid jeti,
i

• tO the flame front at location (x)

• the radial distance from the centerline of the liquid jet
YjetCx)

to the outside surface of the jet at location (x)

, 29
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Vf = :he flame speed

Vl - the gas velocity at the ignition point.

Should part of the gas flow at the injection point be composed of

fuel rich combustion products (i.e., topping cycle engines) then

appropriate adjustment to the mixture ratio equation is performed by

the program. The program uses the local mixture ratio (_S(x)) with

the combustion gas properties table to calculate corresponding pseudo

gas stagnation temperature, etc., to the local pressure through interpo-

lation techniques. This stagnation temperature is then reduced in the

program by the corresponding amount of energy stored within the

unreacted oxidizer vapor and droplets at location x. Static temperature

is computed assuming "frozen" composition as will be described later.

Values for CA and BA are also needed for the chamber. To obtain T_ese,

comparisons were made with data from two different engines. :n this

case the comparisons were n_de of measured and predicted combustion

efficienctes of short chamber length, non-burning-cup segment engines.

Utilizing the third method developed for the cup, curves of BA and CA

which give the co_rect performance level for eac_ e_gine were obtained.

These were obtained by calculating the gas and spray flow and combustion

in the chamber. Nonburning cup exit flows were ignited _t the cup

exit on the fuel sleeve and a flame speed of 600 feet/sec was utilized.

Flame speed in the chamber is not precisely kno_m, however, parametric
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studies show that flame propagation is complete in no more than .IS

inches (three normal axial steps) for flame speeds as low as 350 feet/

second. Cross plots of BA and CA for the proper chamber conditions

yielded a single cross point. The final point selected was checked

by predicting an independent segment engine efficiency and also

predicting the liquid jet lengths of the J-2 and J-2S. Combustion

within the latter two engines had been observed and photographed in

subscale transparent hot-firing tests (Ref. 8). The model predictions i
I

are in good agreement with the test results when the computations are I
I

performed without using DER/STC but using the CICM program to compute

combustion efficiency _c* down to the engine throat. Computation

of BA and CA for the chamber was performed in a similar manner since

the segment engines used to obtain the values of the parameters were

especially chosen. None of the engines had Rigimesh flow) all had

100 percent efficient intraelement mixing characteristics) and no

manifold flow maldistribution. Consequently the engines could be

viewed as single streamtubes in which the mixture ratio was uniform, i
{

Additionally a great deal of measured performance efficiency data

were available for these selected segment engines. J
!

SUMMARIZATION OF THE CONSERVATION EQUATIONS FOR SINGLE ELEMENT

COAXIAL INJECTION COMBUSTION
:i

As stated previously the program is based on the use of conservation
!i !i

! equations for both the liquid jet and combustion gas/spray flow in the

i cup region and chamber flows. Where appropriate, as in the cup, these i i

t
}

i
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e_ations have been used with other correlation equations to determine

the propellant contact point and the flow conditions cf the propellants

at that point. In addition, the effects of flame propagation in flared

cups and in the chamber (from flow exiting from non-burning cups)

have been introduced. Values for BA and CA in the cup and chamber have

been determined.

The analysis of the injector element, as far as prediction of vaporiza-

tion efficiency is concerned, proceeds from a flow field such as that

depicted in Fig. 5. Three axis)qmetric flow fields must be considered;

(i) the liquid jet, (2) the spray/gas burning (or non-burning) flow )
t

surrounding the jet; and (3) the Rigimesh flow (in the chamber)

surrounding the spray/gas flow and mixing with it. Flow within each

of these fields is considered to be one-dimensional.

Four sets of conservation equations are ased, one each for the

combustion (or non-burning) gas, the spray, the liquid jet, and the

Rigimesh flow. The four sets of equations are related by expressions
i

which describe the transport phenomena bc,tweenthe flow streams.
i:

It is quite possible and convenient to sum the conservation equations _,
!

for each constituent and obtain one overall set of combined equations !i
• I

replacing one of the four original sets of equations. Numerical techniques _,

and practice indicate that this set of combined equations should replace

the combustion gas conservation equations. Terms for transport phenomena

between streams are decoupled from the combined conservation equations

32
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so that they can be directly integrated. _e entire set of all

: equ:,tions (and their derivations) can be found in Ref. 8. For this

user's manual only a verbal description of the conservation equations

are presented. However, the expressions representing the transport
!

phenomena of mass, energy and drag force are presented in detail.

A. The Overall Combined Equations

1. The local mixture ratio equation.

2. The overall continuity equation expressing conservation

of the mass of the gas, spray, jet and Rigimesh flow at

every increment. The sum of the mass of each flow is

a constant.

3 The overall momentum equation

4. The overall energy equation

a) This equation can be rigorously written for the flow

enthalpies and velocities and with the use of

tabulated gas equilibrium properties as a function of

mixture ratio and pressure solved i=eratively with the

other equations. This requires extensive triple

interpolatioD _nd produces an inefficient program.

Experience indicates that the equilibrium combustion

gas properties are weak functions of the stagnation

_3
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pressure; hence the overall energy equation is

replaced by a set of combustion stagnation properties

dependent only on the injection pressure and tempera-

ture and the local (axial varying) mixture ratio.

Stagnation temperature, etc., (as a function of axial

location) is then directly and easily computed from

the properties tables. This temperature is adjusted

(reduced) for the energy contained in the spray and

remaining oxidizer vapor. Reduction to static flow

temperature is accomplished by assuming that no

species change takes place between stagnation and

flow conditions. Th_s, except for temperature, gas

properties (specific heat ratio, viscosity, etc.)

in the flowing stream are assumed to be the same as

at stagnation. The equation

lJ• _ NN0

T = To i - "R Yo g To

is used to compute the static temperature.

Here T = static temperature

To = stagnationtemperature

Yo = specific heat ratio

MWo = stagnation molecular weight o

34
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R = universal gas constant

V = velocity of gas

Good agreement results when this method is compared

with the rigorous equation (and its attendant

comi_...,ted properties tables).

5. Equation of _ate

B. The Jet Equations

Expressions for continuity, momentum and energy are considered;

drag on the jet is neglected in the momentum equations

since the effect is accounted for in the production and

acceleration of droplets. Similarly, thejet temperature

is considered to be constant since the surface stripping

prevents conduction to the jet core.

C. The RiBimesh Flow

This flow is considered to be isentropic. The continuity

equation contains a mixing rate expression, but this does

not affect the conditions required to have isentropic flow.

i D. The Spray Equations

! It is this set of conservation equations along with thet

t expressions for the stripping rate and dropsize production

the. essentially control the program. Of particular importance



in the spray equations is the vaporization rate, drag force

and heating rate expressions in the continuity, momentum and

energy equations, respectively• These equations are principally

initial value problems in that a new initial condition is formed

at each axial increment along the jet.

All of these conservation equations are required for simultaneous

solution on a digital computer to predict engine performance. Iteration

of the initial assumed injector face pressure is required until the

throat velocity is sonic. The computation of the combustion gas is

considered to be composed of constituents in thermodynamic equilibrium.

This is in agreement with the accepted approximation that, for well

designed engines, drop vapor diffusion rates are very much more

limiting than gas phase chemical kinetic rates.

Expressions Describin_ the Transport Phenomena

1. Drag Force on Droplets

The expression describing this droplet dynamic transport term

appears in the spray momentum equation. The drag force is de-

fined as:

Fn" _ i (Dn)2 (uO - un) (,u - un,) CDn;

- 24 _ (Dn)3 _x
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where

n

; Cll - drol,!,'_ _trn_1 coefficient,
initial drop _,roltp size n.

n

I) - droplet diameter

Fn - drag force on droplet

p - gas pressure

u - gas velocity

n
u - droplet velocity

x axial location

e gas free-stream donsity

The drag force includes both frictional drag and tile drag due to volume

forces across tile drop arising from any existing gas pressure gradients.

Other terms in the drag force equation, such as the acceleration of the

"apparent mass" of the gas displaced by the droplet and the Basset term

(non-steady condition) have been neglected because

n
p :> O of tl:e gas

n
o - the density of the droplet

The validity ot' the equation is limited to tile applicability of the existing

correlations for the droplet drag coefficient. The review of existing

correlations in Ref. 8 indicate that Rabin's, et al, work in Ref. 5 is

still considered to be tile best correlation for describing drag coefficients

! whoa :q,l, lied to tlrol, let_ il_ :1 rocket t't_l_bll_tion eh_ll_ber flow. Pabin'_ I¢ork
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shows that C__ is a function of the relative Reynolds number. The

correlation includes (1) the effect of gassification in a convective

flow field and the effects of distortion of the drop,

CD = 24 Re=0"84 Re <
80

= .271 Re0"217 80<Re < 104

= 2 Re > 104

where

Dn nlu-u I
Re ;

g_

and u is the gas free-stream viscosity.

2. Droplet Vaporization and Heating Rate*

Background. The quasi-steady evaporation coefficient approach

to droplet heating and burning, while empirically based on the

observation that a burning droplet's diameter squared varies

linearly with time, has been expressed analytically in increas-

ingly comprehensive formulations. These models are based on the

concept that a spherical flame surface surrounds a spherical

droplet, with simultaneous heat transfer to and evaporation from

the droplet being enhanced by the presence of the flame. These

models have all been formulated as quasi-steady problems (i.e.,

time variation has been neglected in writing the conservation

equations), although there are no assumptions in the models

that preclude droplet heating. Relatively recent work a=

*For clarity, notation has been changed in this section; nomen-
clature is placed at end of section.
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Rocketdyne (using the addition of diffusion equations) has culminated iI

Iin the added development of a thin-flame model that includes uniform

droplet heating. A problem that arises in applying such a model, how-

ever, is that the initial heating and burning rates may be over-pre-

dicted by assuming a flame exists when the vapor concentrations are

too low to support it. Another problem is that the derived formulae

for the burning rate (or the evaporation coefficient), in all of these

models have singularities (blow-up logarithmically) if droplet tempera-

tures appr,_ach propellant critical temperatures. One final problem is

that exposing the droplet to even mild forced convection is likely to

blow the flame into the droplet wake or extinguish it, so that flame-

enhancement of vaporization does not occur.

As a consequence of these limitations and problems, propellant droplet

gasification and burning has also been analyzed from a vaporization

standpoint, with vapors diffusing into and mixing with a high-tempera-

ture gas stream. So far as the droplet is concerned, combustion reac-

tions within that gas stream serve to keep the gas temperature high and

the vapor concentration low. (In practice, reaction to local thermo-

dynamic equilibrium is usually assumed.) To the extent that the free-

stream gas temperature is lower than the stoichiometric flame tempera-

ture (the thin-flame model's driving temperature), a vaporization model

will predict lower droplet burning rates than will a thin-flame model.

i An evaporation model that is commonly used for analyzing spray gasifi-

! cation in rockets is that of E1 _,.:_il (Ref. 6) and others at the
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University of Wisconsin. By solving spherically symmetric, quasi-

steady conservation equations for simultaneous heat and mass transfer,

droplet mass evaporation rate and (uniform) heating rate expressions

have been developed.

It is possible to calculate nonuniform temperature distributions within

a droplet undergoing heating (e.g., Ref. 8), but it is usually assumed

that internal temperature gradients are prevented from building up by

strong internal circulation. Under convective flow conditions, surface

shear does promote circulation and this simplification is probably quite

valid. Then the uniform droplet temperature is obtained from:

Forced convection and resultant nonspherical transfer processes are

accounted for through empirical Nusselt number correlations for both

heat and mass transfer. The Nusselt number correlations used in the

mass transport equation were obtained by Ranz and Marshall (Ref. 9);

based on droplet film (f) conditions.

SUm = 2 (i + 0.3 ScfI/3 RefI/2)

N_-2(1• 0_ _,fl/_@/2)

They verified this correlation with data from vaporization of water

droplets in heated air. The equations derived thus account for both
i

droplet heating and evaporation.

i
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The foregoing droplet heating and evaporation mode] is capable of

computing droplet behavior to complete combustion at subcritical

chamber pressures, although the vaporization rate blows_p loga-

rithmically as droplet temperatures approach the boiling temperature

(X:;,_-_i). For most conditions, the "wet bulb" effect suppresses theC_

equilibrium droplet temperature enough below the boilinj point to

avoid the singularity. There, however, the evapo_,tion rate is

strongly dependent upon droplet temperature and, because an implicit

solution of the system of eqtmtions is required, many iterations may

be needed to obtain convergence. Recent work, summarized in Ref. 8,

gives good correlation with experimental data under such conditions,

even up to high pressures, if the effects of the presence of other

gases on the vapor pressure and "heat of vaporization" are taken into

account.

Real Gas Effects. For vapor-liquid equilibrium, the free energy is the

same on either side of a phase interface. This fundamental relationship

for vapor-liquid equilibrium is conveniently written in terms of

fugacities; for each component i, the fugacity of the vapor f v is equalI

L

to that of the liquid fi (Ref. 7). Since the liquid senses the total

pressure while the vapor senses only its partial pressure, the equi:ibrium

relationship can be written as

i fv '
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ttence, at constant temperature, as the total pressure increases, the partial

pressure of the vapor has to increase to maintain the required relationship

for equilibrium. For a non-ideal gas, the entha.py is a function of the

partial pressure of the gas (Ref. 10). Hence, the heat of vaporization,

_qvap' will be a function of total pressure since

^" = tt - t1£yap V

In the calculation of vapor-liquid equilibrium, the vapor has to be considered

a non-ideal gas. Of the four two-constant equations of state which have been

widely used, the Redlich and Kwong equation is more accurate and the best at

high pressures. The Redlich-Kwong equation is:

RT a

P = _ - T0"5 v(v+b)

where a and b are determined from mixing rules (Ref. 7). To match data over

wide ranges, a and b have been programmed as functions of temperature.

These "real gas" corrections have been neglected in most prior applications of

the El Wakil droplet vaporization model. Under supercriticalpressures, some

conditions led to calculated equilibrium temperatures below the critical

temperature, but usually no equilibrium temperature was reached and the drop-

lets were heated through the critical temperature. The model could be used

beyond th!s point, but it usually was not because a physical model was lacking

n
for Xv at the "surface" of the pure supercritical vapor pocket. Instead, most

users either assumed instantaneous mixing of such supercritical vapors with
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the surrounding gases, which is obviously unsatisfactory, or switched to a

supercritiual burning model due to Spalding (Ref. II). This latter model,

however, treats only the mass transfer and assumes that the vapor pocket

remains at its critical temperature. As a result, no prior combustion model

employin the El Wakil vaporization formulation can be adopted carte blanche

for supercritical spray heating and combustion.

Interestingly, introduction of the real gas corrections for vapor pressure

and heat of vaporization caused the El Wakil solution for droplet temperature

to reach a subcritical equilibrium temperature for all conditions. This is

known from photographic evidence (Ref. 12) to be unreal, so the need for an

improved formulation was apparent.

New Droplet Heating and Diffusion Model. The El Wakil model has been extended

and improved to overcome this physically unrealistic result. The new model

is referred to as the droplet diffusion model. The main difference between

it and the old model i= this: In the El Nakii formulation, only the propel-

lant vapor is considered to have a non-zero net flux in the film surrounding

the droplet, while in the new model the radial mass flux of combustion gas in

the film surrounding the droplet is no longer assumed to be .-qual to =ere.

Instead, the molar flux of combustion Ras is defined at the droplet surface

through a moving control volume formulation such that changes in the droplet

radius, due to droplet density changes and mass diffusion, cause it to be

greater than or less than zero. The droplet surface boundary condition is

determined througl_ use of ,*he species continuity equation. This is one of

the major chan_es developed since the initial version of this model was pro-

grammed into the droplet heating and vaporization version of the current

DER(STC) computer prograM. (The other major change is the inclusion ofi
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solubility, using the methods of Ref. 7, of the external gas in the droplet

surface layers; this latter change a11ows computation of the droplet surface

vapor concentration to extremely high pressures.) The droplet surface boundary-

condition equatione are:

i

a) = ar_
MWEd NEd OEd _

Thus, as the droplet '_urns" the external diffusing combustion gas is allowed

to enter the control volume and occupy that fractien of the volume v_cated

by the receding droplet surface.

rhe diffusion rate, or burning rate, is defined by the diffusion equation and is

where

B =- A �OEdA - 1

MWEfPvd

(NOTE: Here f refers to "film" conditions.)

A= I+
6n

v
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The droplet hea_vp rate is defined to be

-1

AC + CpE Pvdl ;Pvf f-

where

m: i,kfonN A+%Ef

The droplet diffusion model no longer has the logarithmic singularity at

either the droplet boilin7 or propellmlt critical temperatures because, as

droplets are heated through these temperatures, the value of B is such that

[i - B_2 does not vanish. It thus becomes possible to continue analyzing

spray droplets' behavior after they have become fully gasified, but have not

yet been diffused and mixed into the surrounding combustion gas stream.

Comparison of the foregoing droplet diffusion model equations with the old

model equations, e.g., 2s given by El Wakil, shows them to be very similar.

The major differences are the appearance of the parameters A and B. Examina-

tion of the equations shows, however, that A and B depend upon the heating

and vaporization rates so that the droplet diffusion model must be solved

implicitly by iterative methods. If the heating and vaporization rates are

low enough that 3r_/3t vanishes, A „the droplet diffusion model

reduces rigorously to the El Wakil model. Chemical reactions are not taken

into account directly in the droplet heating and diffusion model, but combus-

tion is simulated by specifying a bulk gas equilibrium flame temperature

and zero droplet vapor mass fraction in the local free stream (except where

a flame front is around thc jet).

45

1974024110-056



,!

For this section: i
.i

a, b parameters in Redlicn-Kwong state equation

B parameter in droplet diffusion model

C specific heat at constant pressure
P

molecular diffusivity

D droplet diameter
i

f fugacity {

H enthalpy ]

AI! heat of vaporization
yap

k thermal conductivity

_r_ molecular weight

m rate of change of mass

N the absolute gas molar flux

Nu Nusselt number

P,p pressure

Pr Prandtl number

Q spray or droplet heating rate

Re Reynolds number

R universal gas constant

r radial coordinate (drop radius)

Sc Schmidt number

T temperature

t time

v molar or specific volume I
!

x mole fraction of droplet vapor

_ z heat transfer blockage term

}

i!,
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Greek Letters

0 density

Superscripts

L liquid

th
n concerned with the n droplet size group

v vapor

Subscripts

d droplet (droplet surface)

E external gas

f droplet film

h heat or heating

liquid (usually referring t_ droplet properties)

m mass

v droplet vapor, vaporization rate
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INTERFACING WITIIDER

Integration of the computer program into the DER methodology was formulated

after considering many alte_mative methods for handling intra-element mix-

ing. It was decided that the most accurate way to include intra-elementmix-

ing was to divide the spray and gas flows for each coaxial element zone

into multiple mixture ratio zones. The manner in which the zones are sub-

divi, ! to simulate the intra-element loss is determined from cold flow

measurements. These cold flow measurements relate the element geometry and

flow conditions to its mixing efficiency. Such information is input to the

CICM program in terms of mass fraction as a fm_ction of the total fuel and

oxidizer flowrate fo, each coaxial element zone. _ auxiliary program (sub-

program) is used to perform this analy3is and interface CICM with the stream-

tube portion of DER. The auxiliary program organizes the spray/gas informa-

tion generated by the coaxial element zone calculations in terms of punched

card output. The streamtube portion (STC) of DER must, of course, be pro-

vided with more information than this punched card output.

During a coaxial element zone CICM analysis, as many as 100 droplet groups

can be generated by the stripping process, tIowever, to interface with the

SIC portion of DER, the droplet groups must be condensed to fewer than 12

equivalent droplet groups (restricted by STC program). The auxiliary program

condenses the number of CICM droplet groups to those necessary (nDER) through

use of input variables which define the mass fraction of the spray in each

DER droplet group. The DER droplet group temperature, velocity, and droplet

diameter are determined by requiring conservation of droplet energy, droplet

momentum, and droplet spray vaporization rate, i.e.,

48

-- n---..--- .........

......................................................................1974024110-059



i.

J

WDER. = Z WCICM.

J i=ist 1

!' i°

3

WDER. hDER -- _ WCICM" hCICM.
i J J i=ist z z

i ii

[
i WDER. VDER. = Z WCICM" VCICM"

i j j i=ist 1 1

WDER. ij WCICM.
J -- _ i

, 2 _ 2 2
_DER. ODER. DDER. i=ist VCICM. OCICM. DCICM.

3 J z z l z

where the lower and upper limits of summation are determined by

: fSPRAY WSPRAY

WDERj DERj \ TOTAL

The amount of fuel and oxidizer for each DER zone are specified as mass

fractions of the total fuel and total oxidizer flowrates for each coaxial

element zone calculation. _e DER start plane pressure, zone areas, and

gas velocities are determined by requiring conservation of the gas mass,

momentum, and energy in the coaxial element zone with the constraint that

the sum of the DER zone areas must be equal to the chamber cross-sectional

area.

_e output of the auxiliary program consists of streamtube initialization!

punched cards for use in the supercritical version of the DER program.
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The order in which the streamtube initialization cards are punched depends

on the order in which the coaxial element zone calculations were performed.

The first set of streamtube cards corre_p_nds to the first coaxial clement

zone calculation, the second set corresponds to the second coaxial element

zone calculation, etc. The user can, if he chooses, reorder the streamtube

cards in any manner that he selects before executing the DER program.
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HAIN PROGraM

A logic diagram of the CICM main computer program is shown in Fig. 7.

Also shown in Fig. 8 throughii are logic diagrams for several important

subroutines. The method of solution used in the main program is summarized

in the following paragraphs.

Input da_a required are: (1) tables of propellant and combustion gas prop-

er::es, (2) properties of the equilibrium combustion gas at stagnation

conditions, (3) miscellaneous program control information, (4) case infor-

mation data. The input data are printed as they are read by the program,

which permits a full documentation of the computer run conditions.

The input data are used in an initialization section to calculate a number

of program variables which include updating the stagnation equilibrium com-

bustion gas properties (CGTBI2), defining the cross-sectional area as a

function of axial distance (AVARor AVARP), and velocities and properties

(INIR) at the start plane. Initialized data are printed out before entering

the main computational iteration loop.

The main computational loop solves the model iterations at each axial posi-

tion using sequential marching numerical methods. At each axial location,

the liquid jet stripping rate and mean droplet size generated by the strip-

ping are calculated based upon the local combustion gas velocity and combus-

tion gas properties (ATOM); a new spray droplet size group is initiallized

from these local data. Droplet acceleration (DRAG), heating, and vaporization

(DINS) are then calculated for each droplet group present in the combustion
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Figure II. Subroutine FDTDX Flow Chart
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gas. A portion of the "Rigimesh" gas is then mixed into the combustion gas

and do_,mstream gas veloc1=ies and properties are calculated based upon the

total droplet vaporization rate, amount of "Rigimesh" gas added, and the

cross-sectional area (CGAT). initialization of parameters for the next step

is then perfermed (INII¢)and, at selected axial locations, complete gas and

propellant spray group data are printed (@UTPUT).

Upon completion of the main iteration loop, if the case was a cup calculation,

the program then checks to see if the cup exit pressure is within a tolerance

(which is input) of the chamber pressure. If the cup exit pressure is outside

the tolerance, the case is rerun with a new estimated cup delta pressure. If

the cup exit pressure is within the tolerance and the case is a coupled cup/

chamber calculation, the calculated cup exit conditions are used as initial

conditions for the chamber calculation along with chamber information (INC}_).

Also, if the DER option was specified in the input, cup exit conditions are

saved on a scratch tape (_UTCUP). If the case is not a coupled cup/chamber

calculation, the program branches to a read location specified by the variable

IREAD to begin a new case or terminates the calculations.

If the DER option was specified, spray and gas data are saved (@UTDER) on a

scratch tape unit. If all the DER zones have not been executed, the program

branches to the case input statements to read in new zone data. If all the

D_R zones have been executed, the program checks to see if each chamber case

was continued to the axial position required for DER punched card output. If

any of the zone chamber cases was terminated before reaching the axial posi-

tion required for DER punzhed card output, the program recalculates these
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zone chamber case_ (INCUP). Upon completion of all zone calculations, the

program calculates the DER punched card information (DERINI), punches the DER

cards, and lists the DER punched card output. The program then branches to a

read location specified by the variable IREAD to begin a new case or terminates

the calculations.

The version of CICM described in this report consists of a main or calling

program together with 33 subroutines. A listing of the CICM program, together

with its subprograms and function routines, is shown in Appendix A.
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SUBROUTINES

AT_ This subroutine calculates the portion of the liquid jet that

is atomized over one axial computational increment. A droplet

spray group is calculated, and the initial weight flow rate

and initial mean droplet diameter of the group are determined.

AVAR In this subroutine, the cross-sectional area per injection element

is calculated at each axial computational step for an axisymmetric

combustion chamber.

AVARP In this subroutine, the cross-sectional area per injection element

is calculated at each axial computation step for a combustion

chamber specified by a table of areas at specific axial distances.

CGAT In this subroutine, the portion of the "Ri_imesh" flow which is

mixed with the combustion gas stream is calculated. Combustion

gas properties are reevaluated as a function of local mixture

ratio. Division of the constrained area between the liquid jet,

combustion gas, and "Rigimesh" streams are solved iteratively.

CGPR@P In this subroutine, the combustion gas stagnation temperature and

properties are calculated from tabulated values and the local

mixture ratio of burned propellants. Droplet and non-reacted

liquid vapor energies are subtracted from the tabulated stagna-

i tion temperatures.
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CGTBIN In this subroutine, the stagnation equilibrium combustion gas

properties are read into program as a function of mixture

ratio.

CGTBI2 Subroutine entry point in CGTBIN which adjusts properties read

by CGTBIN for changes in propellant inlet energy.

CPLF In this subroutine, the liquid specific heat is obtained by a

a double interpoaation of values tabulated as a function of

pressure and temperature.

CUBIC In this subroutine, the real roots, and the number of them, are

determined from the coefficients of a cubic equation.

DERINI This subroutine is used, if the option is selected for DER

output, to recall data from a scratch data set. Spray droplet

groups and gas flows are setup and parameters punched out for

initial values to each stream tube in DER.

DHVS In this subroutine, the heating and vaporization of each spray

drop group are calculated with the support of several subroutines.

DINTRP In this subroutine, a linear double interpolation is performed

using points and slopes which have been previously determined

in subroutine L¢CFAC.
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DRAG In this subroutine, the spray droplet velocity, which changes

due to drag forces, is calculated. Droplet Reynolds number

and drag coefficient are calculated in the procedure, and

constraints for the droplet velocity to approach gas velocity

are imposed.

EQSTAT In this subroutine, the densities of liquid and of gas mixture

are calculated from the Redlich-Kwong equation of state.

FDTDX In this function subprogram, dTd/dX , is calculated for another

function subprogram, FT. In the solution of dTd/dX , spray

vaporization and droplet diameter are also calculated. This

function subprogram is basically the vaporization model in CICM.

FGPR@P In this subroutine, mean droplet film physical properties and

film diffusivity are calculated for subprograms FDTDX and DHVS.

FT This function subprogram is used by subroutine DHVS, which also

transmits it to subroutine ZER@, for determining the value

of a function based on a predicted value of droplet temperature.

This function goes to zero when the correct droplet temperature

is found. The bulk of the calculations performed by FTare done

in its subprogram FDTDX.

HEAD This subroutine prints a header page to identify the computer

! program.
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INCHA This subroutine establishes the chamber initial conditions

following an injector cup analysis.

INCUP In this subroutine, cup exit conditions, saved by subroutine

_UTCUP, are read from a scratch data set.

INDER In this subroutine, DER data, saved by subroutine OUTDER, are

read from a scratch data set.

INIR In this subroutine, initial values for the flow parameters

are calculated and printed.

INIW In this subroutine, parameters are initialized for next axial

step. The "I" level parameters are set equal to the "2" level

parameters of the previous step.

L@CFAC In this subroutine, the location of the first of two sequential

values in an array which bracket a specified value are found,

and a scale factor, (X - XI)/(X 2 - XI), _s calculated. The

values in the array must be arranged in either ascending or

descending order and the validity of the order is checked if

the option is specified.

OUTCUP This subroutine causes cup exit conditions from an injector

cup element analysis to be stored on a scratch data set.
. -



_UTDER If the option is selected for DER punched output, this

subroutine causes spray and gas flow data to be saved on

a scratch data set for processing at the end of the job.

_UTPUT This subroutine causes the solution at specified axial

locations to be printed. This is the primary output routine

of CICM.

_[_GF In this subroutine, the gas density is calculated. A com-

pressibility factor is used, which is obtained by a double

interpolation of values tabulated as functions of temperature

and pressure.

STLF In this subroutine, the liquid surface tension is determined

by performing a double interpolation of tabulated values as a

function of temperature and pressure.

TABIN This subroutine causes the propellant liquid and vapor physical

property tables to be read into the program and printed out, if

the option is specified.

VISLF In this subroutine, liquid viscosity is obtained by a double

interpolation of values tabulated as functions of pressure

and temperature.
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XVD[W In this subroutine, the mole fraction of vapor at the droplet

surface, heat of vaporization, and Redlich-Kwong A and B

parameters are obtained by interpolation of tabulated values.

ZER_ In this subroutine, droplet temperature is found, starting with

upper and lower limits, by successive solutions of a function

of droplet temperature with subproEram FT being used. The

final value of the function must approach zero• If the primary

numerical solution is unable to converge on a solution, a

secondary numerical solution is automatically reverted to

which has better numerical stability, but is less accurate than

the primary numerical method.

{
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SpecifIc input data fer the £TCH computer program are listed in

' Tables 1 , 2 , 3 , and 4 , which have been strl_ctured in the

format of a typical input punched-card data deck. The input con-

slats of blocks of cards describing the propellant and combustion

gas, stagnation equilibrium combdstion gas, control data, and case

data. In these tables, the "CARD NO." is a suggested card identi-

fication number (punched in columns 73-80) which is consistent with

sequence numbers on the sample data cards listed in Appendix B.

Where ranges of ID sequence numbers are given, consecutive integers

are implied. (Note that the different blocks of the CICH program

input data deck so sequenced should not be sorted with ,ach other, as

there is overlap and/or duplication of sequence numbers between these

blocks.)

The "FORHAT" in the tables of input instructions denotes the type of

FORTRANinput (integer, floating point decimal, alpha-numeric) and

the subdivision of each card's first 72 columns into fields. Standard

FORTRANinput formats are used. Specifically used are:

Co_ent cards (A-format) 18A4

Integer variables with variable names beginning with 6112

letters I through H (no deciNl points, 12 space field

i widths, last digit in last space of field, 6 consecutive
values per card until READstatement is finished).

i
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TABLE 1 INSTRUCTIONSFOR PROPELLANTAND
COMBUSTIONGAS INPUT DATA

..... D SO. VA2!ABLE
,. .... _,. DESCRIPTION

10 IPTAB Print control integer: "O" to suppress printout, "1"
(6112) to print out table of propellant properties.

1

Cards 20=264: input oxidizer droplet m_le frac- [

i

tion, heat of vaporization, ana Redlich-Kwong Iequation of :tare parameters.

20 NPTP(1) Number of pressures in oxidizer mole fraction table.
(6112) Limit: 2 to 30.

NPTP(2) Required to be zero(O)
NPTT(1) Number of temperatures in oxidizer mole fraction table.

Limit: 2 to 20.

NPTT(2) Required to be zero (0)

30,31,etc. TPfI,1) Pressure array in ascending order for oxidizer table.
(6E12.8) I=I,NPTP(1) Units: psia

40,41,etc. TT(I,I) Temperature array in ascending order for oxidizer table
I=I,NPTT(1) Units: OR

50,51,etc. (TXV(I,K,I) Mole fraction of oxidizer vapor at surface of oxidizer
(6E12.8) I=I,NPTP(1)), droplet.

K=I,NPTT(1) Array of values at each pressure must be entered for
each temperature.
Enter NPTP(1)xNPTT(1) number of values,
6 per card with no embedded blank fields.

I50,151,etc {TD}N(I,K,I) Oxf4izer heat of vaporization. Units: BTU/Ibm
(6E12.8) I=I,NPTP(1)), Multiple arrays using same order as for cards 50, etc.

K=I,NPTT(1)

250,251,etc TA(I,1) Redlich-Kwong parameter "a" array used i_ the equation
I=I,NPTT(1) of state for oxidizer. Units: ft4-R_/lbm.

260,261,etc TB(I,1) Redlich=Kwong parameter, "b" array used in the equation
(6E12.8) I=I,NPTT(1) of state for oxidizer. Units: ft3/lbm

Cards 570=737: input oxidizer liquid heat capac-
ity and oxidizer liquid enthalpy

570 NPCP41) Number of pressures in liquid oxidizer table.
(6112) Limit: 2 to 20

NPCP(2) Required to be 2_ro{O)
NTCP(1) Number of temperatures in oxidizer table.

Limit: 2 to 20
NTCP(2) Required to be zero{O)

580,581,etc TPCPL{K,I) Pressure array in ascending order for oxidizer table.
(6E12.8) K-I,NPCF(1) Units: psia

7O
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TARIF 1 • INSTRIJCTIOHS FOR PROPELI,AHT AND
COHBIt_'II(}NGAS INrlFrDA'rA (Cont.)

590,591,etc. TTCPL(K,I) Temperature in ascending order for oxidizer table.
r6E12.8) K=I,NTCP(1) Units: OR

600,601,etc. (TCP(I,K,1) Specific heat at constant pressureofliquid oxidizer.
(6E12.8) K=I,NTCP(1)), Units: BTU/lbm-R. An array of values c_rresponding

I=I,NPCP(1) with temperature array must be entered to correspond
with each pressure. Enter NPCP(I)xNTCP(1) nt_her of
values, 6 per card. [)o not skip any fields.

670,671,etc. (_L(I,K,1) Enthalpy of liquid oxidizer. Units: BTU/lbm
t6F12.8) K=I,NTCP(I)), _ltiple arrays using same input order as cards 600,etc.

T-I,NPCP(1)

"l Cards 940-1477: input tables of oxidizer and fuel
vapor properties in which values of three dependent
variables correspond with tile same temperature array

and at various _res.sure levels.

940 NPV(1) Nt_ber of pressures for oxidizer vapor tables.
fail2) 1A_it: 2 to 20.

NPV(2) Number of pressures for fuel vapor table.
Limit: 0 to 20

_V(I) Humber ef temperatures in oxidizer vapor table.
Li_it: 2 to 20

NTV(2) Number of temperatures in fuel vapor table.
l, imit: 0 to 20

9S0,9Sl,etc TPV(K,1) Pressure array in ascending order for oxidizer vapor
(6E12 R) K=I,NPV(1) table. Units: psia

g60,g61,et¢ TTV(K, 1) Temperature array in ascending order for oxidizer
(6E12.8) K=I,NTV(1) vapor table. Units: -R

970,976,etc (TCPV(K,I,I) Specific heat at constant pressure for oxidizer vapor.
(6E13.8) I=I,NTV(1)), Units: BTU/Ibm. An array of values corresponding

K-I,NPV(1) with temperature array must be entered to corres-

pond with each pressure level. Do not ship any
fields.

1040.1041 (IHt_(K,I,I) Viscosity of oxidizer vapor. O,dts: Ibm/ft-sec.

etc. I=I,NI_(I)), Multiple arrays using same ,nput order as for
(6E12.8) K=I,NPV(1) cards _70, etc.

III0,IIII {THOV(K,I,1) Enthalpy of oxidizer vapor. Units: BTU/Ibm.

etc. I=I,NIW(1)), b_Itiple arrays using same input order as for
(6E12.8) K-I,NPV(I) cards 970,etc.

Omit cards 1250-1477 if NTV(2) • t.
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TABLE i INSTRUCTIONS FOR PROPELLANT AND

COMBUSTION GAS INPUT DATA (Cont.)

_L

CA_,DX0. VA,_IABLE DESCRIPTION
" _3'_v "_" CODE

1250,1251 TPV(K,2) Pressure array in ascending order for fuel vapor table.
etc. K=I,NPV(2) Units: psia

(6F22.8)

1260,1261 TTV(K,2) Temperature array in ascending order for fuel vapor
etc. K=I,NTV(2) table. Units: OR

(6E12.8)

1279,1271 (TCPV(K,I,2) Specific heat at constant pressure for fuel vapor.
etc. I=I,NTV(2)), Units: BTU/Ibm. blultiple arrays using input order

(6E12.8) K=I,NPV(2) per card 970, etc.

1340,1341 (TMUV(K,I,2) Viscosity of fuel vapor. Units: BTU/Ibm.
etc. I-I,NTV(2)), Nultiple arrays using input order per card 970,etc.

(6E12.6) K=I,NPV(2)

1410,1411 (_IOV(K,I,2) Enthalpy of fuel vapor. ,nits: BTU/lbm.
etc. I=I,NTV(2)), Multiple arrays using input order per card 970,etc.

(6E12.8) K=I,I,NPV(2)

jCards iS00-1SS4: input oxidizer tables of dif-
fusion parameters.

1500 NTDF(1) Number of temperatures in the oxidizer table.
(6112) Limit: 2 to 20.

NTDF(2) Required to be zero(O)

1510,1511 TTDIF(I,I) Temperature array in ascending order for oxidizer table
etc. I=I,NTDF(1) Units: OR
(6E12.8)

1520,1521 TDIFF(I,I,1), Oxidizer binary diffusion parameter array (see page 86)
etc. I=I,NTDF(1) for specie to stoichiometric combustion products.

(6E12.8) Units: ft2/sec

1530,1531 TDIFF(I,2,1) Oxi,:izer binary diffusion parameter array for specie
etc. I=I,NTDF(1) to fuel. Units: ft2/sec
(6E12.8)

1540,1541 TDIFF(I,3,1) Oxidizer binary diffusion parameter array for specie
etc. I=I,NTDF(_) to oxidizer. Units: ft2/sec.

(6E12.8)

I550 (TPRF(I,K) Reference pressures used with the three corresponding

(6E12.8) K=I,3), oxidizer binary diffusion parameters. Units: psia
(TTRF(I,K) Reference _emperatures used with _he three correspond-
K=I,3) ing oxidizer bindary diffusi,:n parameters. Uni's:'R

, i i i
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I^PI,E 1 , INSJPI_('TIO_S Fot_ PROPFII,AUT AI3)

I (]_I:RII_I ION f]A,q (CnntI I'WII'[ I)A'I A

:, :7,), ,3. V'd', ''.3 LF,
t Di:SCP,I PT] N,',_
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1610 PCRIT(1) (h'itical pressure of oxidizer. Units: psia.
f6E12.8) TCRI.(I) Critical temperature of oxidizer. Units: OR

F_IWI,(1) _lolec,lar weight of oxidizer as liquid. Units:Ibm/
lb-mole

EM3W(I) Molecular weiRht of oxidizer a._ vapor. Units:Ibm/
lb. mole

1620 PCRIT(2) Critical pressure of fuel. Units: psia
(6E12.8) TCRIT(2) Critical temperature of fuel. Units: OR

l!b"a'L(2) blolecular wright _f fuel as liqLid, gnit_: ibm/lb-mole
Eb._/V(2) _lolecular weight of f,el as vapor, llnits: ]bm/lb-mole

1630 ST¢CMR StoJchiometric mixture ratio
f6E12.8) E_t'R Molecular weight of products at STOCblR.

Units : lbm/lb-mole

Cards 16a0-2254: input table of combustion gas

properties with mixture ratio and temperature as

l the independent variables. This table is used to

deterTnine droplet film properties at the mean
temperature between the droplet and free stream gas

1640 N"MRC(,F Numher of mixt,re rater, levels Limit: 2 to 20

f6112) NTCGF Number of temperatures at each mixture ratio level.
Limit: 2 t_ 2(1

1650,1651, INRCGF(I) ,qixture ratio array in a_cendinl_ order.
etc. (6E12._) I=1 ,bNR{Z(;F

1660,1661 TTCGF(I) Temperature array" in ascending order. Units: OR
etc. ,%F12.8) I=l ,NTCGF

1670,1671 TNWCGF(1,J), blolecular weight array for combustion gas at the first
etc. (6E12.8) .I=I,NTCGF mixture ratio level and corresponding with I"FCGF array.

Units: lbm/lb-mole

1680,1681 1NUCGF(1,,J) Viscosity array for combustion gas at the first mixture
etc, (6E12.8) J=I,NTCGF ratio level and corresponding with TTCGF array.

Units: lbm/ft-sec.

1690,1691 TCPCGF(1,J) Specific heat array for combustion gas at the first
etc. J=I,NTCGF mixture ratio level and corresponding in order uith
(6E12.8) TTCGF, Units: BTU/lbm-R

1700,1701 [ TI_CGF(2,J), Repeat arrays of T_CGF, TI_CGF and TMIJCGF for e_ch
etc. (6E12.8)[ J=l ,NTCGF mixturo

I
! I

7_

1974024110-084



TABLE 1 . INSTRUCTIONS FOR PROPELLANT AND

COMFUSTION GAS INPUT DATA (Concluded)

CA/,i) NO. VARIABLE
& FO:,):.,Vr CODE DESCRIPTION

! I

I I

etc. etc. Unit conversim, options:

If T_CGF(I,I) is negative then the TMUCGF array is

divided by 3600.

If Tb_CGF(I,2) is negative, then the TMUCGF array is

multiplie(1 by 32.16.

Cards 2260-2427: input tables of oxidizer liquid

surface tension and viscosity as functions of tempera-
ture and pressure.

2260 NPST(1) Number of pressures in oxidizer table. Limit: 2 to 20.

(6112) NPST(2) Required to be zero (O)

NTST(1) Number of temperatures in oxidizer table. Limit: 2 to 20

NTST(2) Required to be zero (0)

2270,2271 TPST(K,I) Pressure array in ascending order for liquid oxidizer.
etc.(6El2.8) K=],NPST(1) Units: ibf/in. 2

2280,2281 TTST(K,I) Temperature array in ascending order for liquid.
_tc.(6E12.8) K=I,NTST(1) Units: R.

2290,2291 (TST(I,K,I) Oxidizer liquid surface tension. []nits: ibf/ft.

_tc.(6E12.8) K=I,NTST(1)), An array of values corresponding with temperature array

I=I,NPST(i) must be entered to correspond with each pressure level.
Do not skid fields.

2360,2361 (TVISL(I,K,I) Oxidizer liquid viscosity, Units: ibm/ft-sec

_tc.(6E12.8) K=I,NTST(1)), Multiple arrays using same input order as cards 2290,et¢
I=i ,NPST(1)

Cards 2600-2687: input tables of fuel compressi-
bility factor as a function _f temperature and pressure.

2490 NPZ(]) Required to be zero (0)
(6112) NPZ(2) Number of pressures in fuel table. Limit: 2 to 20.

NTZ(1) R_quired to be zero (0)

NTZ(2) Nt_ber of temperatures in fuel table. Limit: 2 to 20.

2600,2601 TPZ(K,2), Pressur, array in ascendJ-3 order for fuel.

etc.(6El2.8) K=I,NPZ(2) Units: psia

2610,2611 TTZ(K,2) Temperature values i_l_¢ending order for fuel.
etc.(6El2.8) K=I,NTZ(2) Units: R

2620,2621 (TZ(I,K,2) Compressibility factor of fuel. An array of values cor-
etc.(6El2.8)! K=I,NTZ(2)), ponding with temperature array must be entered to cor-

I=I,NPZ(2) pond with each pressure value. Do not skip fields.
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TABLE 2 . INS'FRUCTTONS Fru_ STM;NATION FO,III!,1Ftf_IltM
COMRIISIIf/N {,AS l NPtrl' IIA'I_

(,'d,_, LO. VA,_,:IAi;LE I_I:SC_! PTION
,_ i:cq2 L'_T CODE

w

Combustion gas properties are entered as dependent
variables of propellant O/F weight mixture ratio at a

press-re roughly near the case chamber pressure.

Each card contain._ a mixture ratio followed with corres-
ponding values of the dependent variables.

Cards must be entered Jn order of ascending values of
mixture ratio.

5 NTAB Number of mixture ratio values. Limit: 2 to 18.

(6112)

10 ]SIR(l) Propellant O/F weight mixture ratio
fSE12._) T'I'(;(I) Combustion temperature. Units: OR

'I$tW(I) blolecular weight. Units: lbm/lb-mole
TGAbt(1) Frozen specific hear ratio
TVIS(1) Viscosity. Units: lbm/ft-_ec

180 TMR(18) Enter NTAB n.mher of card_
(5E12.8) TT(.,(18)

row(IS)
TGAM(18)
TVlS(18)

Options: If sign on TTG(1) is negative, TTG array is
multiplied by 1.8.

If sign on TVIS(1) is negative, TVIS array is
divided by 3600.

NOTE: Values from this Table are modified during com-

puter execution to allow for differences in
propellant injection energy from those assumed
in Table to those in a specific analysis.
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"FABLE 3 INSTRUCTIONS FOR CONTROL INPb_I" DATA

'C..\2D "_ VAP,TABLE

"'_" DESCRi PTION
& FO_Lv.\7 CODE

In IDER Control indicator: value __<0 to bypass DER option;
tl112) value > 0 for ntmlber of injector flow zones analyzed

ICUPC Control indicator: value of "O" for one cup or a

chamber calculation, value of "I" for both cup and

chamber calculations. If IDER > 0, program sets

ICUPC = i.

NOTE: If IDER = 0 and ICUPC = 0, then NCIb_MC, b12C and

NC_N4C are ignored.

NCIL_MC Control indicator for type of chamber geometry input:
value of "0" for conventional geometry (card 50),

or an integer for the size of a cross-sectional

area array (card 60, 61, etc.)
M2C Print control indicator" solution printed at calculation

step intervals of bl2C.
NC@N4C Print control indicator to fnrce printout of each step

for first NC_N4C chamber calculations.

Include cards 30-60 only if either IDER or ICUPC > 0.

This card group is used to define chamber parameters
when the computer run includes the analyses of both
injector element cup(s) and chamber.

30 WGJC Total chamber "rigimesh" (or gas mantle) flowrate at

(6E12.8) injector face. Units: Ibm/sec.
EMRGJC Weight mixture ratio (oxidizer/fuel) of WGJC flow.

STGJC Stagnation temperature of WGJC. Units: °R.
EMWGJC Molecular weight of WGJC. Units: ibm/Ib-mole.

GAMGJC Specific heat ratio, _, of WGJC.

XLbIC Length of mixing region. Rigimesh flow is mixed into
the combustion region linearly over this region.
Units : in.

40 DELTXC Axial step size for chamber calculations. Units: in.

(6E12.8) Recommended value = 0.05 in.
BSPRC Droplet formation size parameter in chamber.*

Recommended value = 120.0

CSPRC Liquid jet stripping rate parameter in chmnber.*
Recommended value = 0.08

XblINDE Minimum axial distance for DER punch card output (not

required if IDER <__0). Units: in.

50 Include card 50 only if NC[LAMC = 0.

(6E12.8) ACSC Cross-sectional area of chamber at the injector end.
Units: sq. in.

CLNTC Chamber length from injector face to the throat plane.
Units : in.

C_NRAC Chamber contraction ratio (area of chamber/area throat).
CCANGC Nozzle angle of converge.ce. Units: degrees

1
*See text page 19 for description.
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"I'ABI,E 3 INS'IRI C"llONq FOR CONTROl, INI'IIT DATA (Concl" "_.1)

{,',::i):,,). V, [At'LE I)I!SCP,IPI'ION
[ _i 70V2::,,Y (:O!)E

50 RCBCC _'nll radius of curvature at beginning of nozzle

(Cont.) convergence. Units: in.
RCTC Wall radius of curvature entering throat. Units: in.

60, 61, etc. Include these cards only if NCtlANC > 0.
(6E12.8) XCItAMC(1) First value in array of axial distances from injector

face for specifying chamber geometry. Units: in.
ACIIANC(1) First value in array of chamber cross-sectional areas

corresponding with position XCttAM(1). Units: sq.in.
XCttAMC(2) Enter NCttANC pairs of values, 3 per card with XCttANC i,:
ACIlAt4C(2) ascending order

I

I

!

I

etc.

I
J
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TABLE 4 INSTRUCI'IONS FOR CASE INPUT DATA

f

• i:C_,,::..V2 COD[{ 1 I_ JC_±I _Iu,_
_A

At least one group Ls al_.Jays required.

If IDliR > 0, then IDEI{ number of groups are included,
each one of which define Jr'jector element param-
eters for a spcci.fic flow zone.

If IDER < 0 and ICUPC = O, then only one of these groups
aa'e included which defines parameters either for a
cup analysis or for a chamber analysis.

If IDER < 0 and ICUPC = 1, then only one of these groups
are included which defines parameters for a cup
analysi s.

110 A_IAT(I) Case comment card one.
(18A4) I=1,18

III A_VAT(I) Case comment card two
(18A4) I=19,36

120 NDSCI Number of spray drop sir.es a_. start plane.
(6112) Nt2I,EM ,gumber of iniector elelnents .in case.

NCI-tA._,I Control indJcat(>r for type of injector cup (or chamber)
geometry input: value of "O" for conventional
geometry (card 140) or an .integer for the size of
a cros"-scctJonal area array (C_lrd 1SO, 151, etc.)

ICUP Control indicator on type of case nnal),sis:
"1" for a_ injector cup analysis only
fT'_,,

for both an injector cup and a chamber analysis
"3" for a chamber analysis only

ICPE Control indicator on gas expansion:
"1" for constant pressure expansion limitation
"O" for full expansion to fill cross-sectional area

IREAD Control• indicator which specifies inFut to be read
for next case:
"O" to start with control card 10
"1" to start with case card 110

"2" to sl.art with combustion gas (CGTBIN) table
input

"3" to start at beginnix:g of input (includes
TABIN and C(;TBLN tables).

130 M2" Print control indicator solution printed at calculation

i (6112) step intervals of M2.NC@N4 Print control indicator to force printout of each step
for first NC_IN4 axial calculations.

i

, iI

/
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TABI,E 4 • INSqRUCTInNq FnP CASF INPIrI' DATA (Cont.)

i,

('M?I_ _,0. VARIABLE DESCRIPTION
,i FOrdb\T CODE

i II l I I

130 fcont,) TEYPGI, Cnntrol indicator for expansion nround liquid post (for

cup calcul,,tion only)*
"1" constant gns expansion
"2" liquid and gas expan_i.on
"3" liquid expansion and gas contraction
Recommended: IEXPGL = 3

IAT¢ Atomization control indicator. Enter value ef "1".

140 Include card 140 only if NCIIAM ; O.

(6E12.8) ACSI Cross-sectional area of injector cup or chamber at
upstream end. Units: sq. in.

CLNT Injector cup or chamber length. Units: in. ,
C_NRAT Area ratio of injector cup or chamber: ACSI over cup

exit or nozzle throat area.

CCANG Angle of convergence: for cup, a negative value

specifies angle of divergence; for chamber, value
is nozzle angle of convergence. Units: degrees.

RCBC Wall radius of curvature leading into convergent section

Units; in. For cup, set RCBG -- O.
RCT Wall radius of curvature entering nozzle throat.

llnits: in. For cup, set RCT -- O.

150,151,etc. Include th se cards only if NCIIAH > O.

(6E12.8) XCI_AN(1) First value in array of axial distances from the begin-
ning of either injector cup for cup analysis or
injector face for chamber analysis. Units: in.

ACitAM(1) First value in array of cross-sectional areas corres-
ponding with position XCtlAM(1). Units: sq. in.

XCItAM(2) Enter NCtlAM pairs of values, 3 per card, with XCItAM in
ACIIAM(2) a_c_nding order.

I

I

etc.

160 WCGI Flowrate per element of gas stream surrot,nding liquid
(6E12.8) jet at start position of case. Units: lbm/sec.

EbtRCGI Weight mixture ratio (O/F) of WEGI.
ACGI Initial cross-sectional flow area of WCGI. Units: sq.in.

EMRII Weight mixture ratio of gas in manifold. EMRII = EMRCG!
when gas is fully reacted at start position of case.

ST? Stagnation temperature of !_CGI at a reference mixture
ratio AMRT. Units : OR

AMRT Reference weight mixture ratio for WCGI temperature of
sTr.

i i |i i ii ,,

*See text page 22 for descr _, ion.
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TABLE 4 . INSTRUCTIONS FOR CASE INPUT DATA (Cont.)

u.,.,D,,_. VARIABLE DFSCRIPTION
& FOF¢_T CODE

170 WLJI Flowrate per element of oxidizer liquid jet at start

) (6E12.8) position. Units: ibm/se_.
TLI Temperature of WLJI. Units: R
VLJI Velocity of WLJI. Units: ft/sec. (If VLJI < 0, area

of WLJI. Units: sq in.)

D@DMAX Maximum dropsize permitted in atomization of liquid jet.
Units: microns.

BSPR Droplet formation size parameter.*

Recommended: BS?R = 120.0 (Chamber),3.0553 (Cup)

CSPR Liquid jet stripping rate parameter.*

I Recommended: CSPR = 0.08. (Chamber), 0.037854 (Cup)

180 WGJI Flowrate per element of gas stream surrounding WCGI at

(6E12.8) start position. Units: Ibm/see.

EblRGJI Weight mixture ratio (O/F) of WGJI.

STGJ ! Stagnation temperature of WGJI. Units: OR
Eb_fGJI iMolecular weight of WGJI. Units: Ibm/Ib-mole.

GAMGJI ! Specific heat ratio, y, of WGJI.

XLM ! Length of region for WGJI to be mixed with WCGI.

i Units : in.
i

190 PCI ] Injector end static pres:_ure. Units: ibf/sq.in.I
(6E12.8) CUPDP i Estimated static pressure drop in injector cup, For

cup analysis only. Units: nsi

CUPDPL ;Tolerance on matching cup exit pressure with PCI.

Units: psi

STX2 ]Start plane position; either distance from liquid
i injection post for cup or distance from

] injector face for chamber. Units: in.
DELTX2 Axial step size for case computations. Units: in.
FC}_ Fract±on of chamber cross-sectional area taken by this

flow zone case.

191 RFLA_ Radial location of the pseudo flame front. Recommended:

(6E12.8) RFLAME = radius of the fuel sleeve. Units: in.

XFLA_ Axial location of the start of the pseudo ¢lame front.

Recommended: XFLA_E = 0.0 (injector face).
Units: in.

VFLA_ Turbulent flame speed. Units: ft/sec

200,201 Include these cards only if NDSCI • 0

etc.(4El2.8 V_DI(1) Droplet velocity of spray group I.
Units: ft/sec

T@DI(1) Droplet temperature of spray group 1.
Units: R

D@DI(1) Droplet diameter of spray group i.
Units: microns

WSPRI(1) { Spray group 1 flowrate. Units: Ibm/sec

Enter NDSCI number of spray groups.

*See text page 19 for description.
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Table 4 . INSTRUCTIONSFOR CASE INPUT DATA (Concluded)

t

'CARD NO. VARIABLE DESCRIPTION
FOR_T CODE

i

1

Include cards 300-331 only if IDER > 0
300 NMIXZ Number of mixing zones per element (maxi_m of 40).
(6112) NG0 Maximum number of oxidizer droplet spray groups for

DER punched output (maximum of 11).

320,321 FFMIX(1) Fraction of total case fuel flowrate in the first mixing
etc.(6El2.8) zone.

F@41X(1) Fraction of total case oxidizer flo_rratein the first
mixing zone.

Enter NMIXZ pairs of values, 3 per card.

330,331 FSDER(1) Fraction of total spray flowrate in the first DER spray
etc.(6El2.8) group.

Enter NC_ values, _ per card.

. i........ |,t J | i i t ii t , • H i t • i _

j
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Decimal variables with variable names beginning 6E12.8

with letters other than I through M

(Use decimal point or account for implied decimal

location, one value every 12 spaces, 6 consecutive

values per card.]

The "VARIABLE CODE" column gives the FORTRAN code names of input variables

as they appear in the program listing. A single value is to be entered

for each coded variable unless it is subscripted. Array sizes for sub-

scripted integer and decimal variables are also indicated within paren-

thesis in this column, following the variable name. For most of the data,

all of the values of one variable are read before proceeding to the next

variable. Note that some arrays with multiple subscripts are "packed",

i.e., values for each subscript level start immediately in the next field,

not skipping fields to start on a new card.

Variable names and/or descriptions of variables are given together with

appropriate dimensions and limits, in the "DESCRIPTION" column. Ge.,erally,

the program is written in units of Ib-in-sec-°R,but there are some

exceptions.

PROPELLANT AND COMBUSTION GAS INPUT DATA

The first block of data required as input to the CICM computer program

comprises the propellant _nd combustion gas properties (Table i). Print-

out of this block during execution is controlled by the variablo IPTAB:

"0" to suppress irintout, "1" to print the data block.
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J:.iqu_d, Vapor and Sta_te - properties

of Propellants (Card No. 20 et seq.)

Extensive tables of propellant properties are provided as input to t!,, i

droplet diffusion model. The first of these tables _ives values for i

the vapor mass fraction, Xv, at the droplet surface (equivalent to a

reduced partial pressure), the heat of vaporization, Ally,and parameters

a and b of the Redlich-Kwong equation of state. Tables of Xv and A[[v

as functions of both total pressure and temperature are provided, while

a and b are provided as functions of temperature only. As noted in

Table 1 , only oxidizer properties are required.

Values in these table_ should correspond to temperatures ranging from

injection temperature to the critic_l temperature only. Pressure ranges

should cover the pressure variation occurring in the subsonic flow por-

tion of a combustor under analysis. It is probably preferable to input

data for much wider variation so that the same tables can be used for

other engines using the same oxidizer. This approach was taken in struc-

turing the liquid oxygen tables supplied with the example case, Appendix I_.

V_lues of Xv and ^Ifv should include real gas effects, i.e., dependence

upon total pressure level. For vapor-liquid equilibrium, the free energies

of the vapor and the liquid are equal. This fundamental r_lationship for

vapor-liqui; equilibrium is conveniently expressed in terms of fugacities;

for each component i the fugacity of the vapor, fiv, is equal to that of

liquid, fl L, (Ref. 7 ). Because the liquid senses the total pressure
the

1.q74N?A1 I n_na



r .............................

while the vapor senses only its partial pressure, the equilibriu_

relationship may be written as

V L
fi (Pv.) = fi (PTotai)

Z

Hence, at constant temperature, as the total pressure increases the

partial pressure of the equilibrium v_por also increases.

In the calculation of vapor-liquid equilibrium, the vapor must be con-

sidered a non-ideal gas. Of the four two-constant _quations of state

which have been widely used, the Redlich-Kwong equation is accurate

throughout the pressure and temperature range and is the most accurate

at high pressures. The Redlich-Kwong equation is:

RT a

P = _ -
T0"5 v(v+b)

The parameters a and b are determined from mixing rules (Ref. 7 ). To

match data over wide ranges, a and b may be expressed as functions of

temperature.

Data for these tables may be obtained by solving simultanec.us_yfour

equations given in Ref. 7 , which are expressions for the liqu;d and

vapor fugacities and liquid and vapor states. Note that, at super-

critical pressures, _Hv _ 0.0 at temperatures well b¢Io_ t!Aecritical

temperature.
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For a non-ideal gar., the species vapor enthalpy is a function of its

partial pressure in the gas (Ref. 10), and i_ thus depenJent on the

tntal pressure. Ilence, the heat of vaporization

^11v _ llvapo r ltliquid

is a functien of total pressure as well as ¢f liquid temperature.

I,iquid Specific Iteat and

(Card No. 570 et seq.)

Tho next t,lock of propellant property data provides liquid specific

heat and liuuid enthalpy as functions of pressure and liquid tempera-

tu_'e. Again, only oxidizer properties are required. Note that,

although these are denoted at "liquid" properties, the tables should

provide data to temperatures as high as the combustion _as temperature;

fer temperatures higher than the saturation temperature corresponding

to the tabulated pressure, the pure vapor propertie.q are used.

Vapor Specific !tea}, V]scos_ndd

[nth_Ir_ (Card No. 940 et seq._

The next data to be input are tables of vapor specific heat at constant

pressure, vapor viscosity, and vapor enthalpy as functions of pressure

and te_erature. These say be derived from tabulations of experimental
b

data or from standard correlation methods, e.g., such as those given in

I Ref. 10 •
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Binary Diffusion Coefficient

Parameter (Card No. 1500 eq seq.)

Oxidizer binary molecular diffusion coefficients are c*lculated in the

program leon. the data input in the TDIFF (I, K, 1) tables. This parar.-

eter is assumed to be a function of temperature; tabulated values cor-

respond to temperatures in the array TrDIF(I, I). The subscript I

denotes the various temperature levels. The subscript 7 indicates the

gaseous specie into which the oxidizer is diffusing into, as noted in

the description in Table 1

The TDIFF parameter has the following meaning: An equation for binary

diffusion coefficients, based on use of the Lennard-Jones potential in

a kinetic theory model, is given in Ref. 10 as:

D12 2
P °12 _D

Multiplying and dividing this equation by a reference temperature and

reference pressure gives:

"'[ ] (0.001858 Tre f (M1 , M2)/M1 H2 ½ 3/2

D12 = 2 ( T ) Pre,_Pref°12% _ -r-/

The product

','f ]0.001858 Tre f (MI + M2)/MI lq2 _
2

Pref _12 flD

is tabulated as the TDIFF parameter.
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Thls is assumed to vary with temperature, but not with pressure.

Note that TDTFF (I, l, l] are for the oxidizer speci_diffusing

into combustion products at stoichiometric mixture ratio. For

lower or higher mixture ratio combustion gases, the multicomponent

diffusion coefficient is approximated by the program for the oxi-

dizer specie_diffusing into a mixture of stoichiometric products

and excess fuel or oxidizer vapor, respectively.

Propellant Critical Properties and

Molecular lqeight (Cards No. 1610, 1620, 1630)

The critical temperature, critical pressure, stoichiometric mixture

ratio, and molecular weight of the stoichiometric products are input

in this data block. The vapor molecular weight will differ from that

for the liquid only if there is vapor phase decomposition. If this

occurs, it is recommended that the heat cf dissociation he included

in the tabulated values of heat of vaporization.

Combustion Gas Properties at

Film Conditions (Card No. 1640 eq seq.)

Combustion gas film properties required in subroutine FGrROP for cal-

culating film gas properties are molecular weight, viscosity, and

specific heat, These are tabulated as functions of mixture ratio and

gas temperature. For the oxygen/hydrogen data deck supplied with the

sample case, these data were obtained from the Rocketdyne free energy

R7
'j
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equilibrium performance program by specifying different values of

mixture ratio and product temperature (rather than mixture ratio and

initial enthalpy).

Oxidizer Liquid Surface Tension

and Viscosity (Card No. 2260 et seq.)

The next propellant properties to be input are tables of liquid surface

tension and liquid viscosity as functions of pressure and temperature.

The tables should include temperatures ranging from injection tempera-

ture to the oxidizer critical temperature.

Fuel Com_ressibilit_ Factor

Card No. 2490 et se_.)

Tables of fuel compressibility factor are input as a functien of pres-

sure and temperature. The tables should include temperatures ranging

from fuel injection temperature to the combustion gas temperature.

STAGNATION EQUILIBRIt_I COMBUSTION GAS INPUT DATA

The second block of data requireJ as input to the CICM computer program

comprises the stagnation equilibrium combustion gas (Table 2 ). Com-

bustion gas properties, tabulated as functions of gas mixture ratio, are

obtained from prior peripheral computation using a thermodynamic equilib-

rium performance program. Rocketdyne's free energy performance program

was used to generate the table supplied in the reference case, but any

comparable program would be sufficient. The combustion temperature,
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molecular weight, specific heat, and viscosity entered in this table

are properties for equilibrium combustion products at stagnation con-

ditions corresponding to the mean expected chamber pressure. The

properties are assuwed to be hmctions only of mixtHre ratio and not

pressure.

CONTROl, INPtrr DATA

The third block of data required as input to the CICM computer program

comprises control data and also chamber conditions (Table 3 ).

Indicator Card (Card No. 10)

The First control input data card contains indicators for controlling:

(1) the DER option (IDER), (2) coupled cup-chamber calculations (|CUPC),

(3) the type of chamber geo_netry input (NCtLaRC), and (4) the chamber

solution printout intervals (M2C and NCON4C). For execution of the

program using the DER option, IDER specifies the number of injector flow

zones (or number of different element types) to be used in the analysis

of the engine. If IDER and ICUPC are both less than or equal to zero,

this card is the only control card required as input,

_'RiBimesh" (or Gas Mantle) Conditions

(Card No. 30)

The next card of control data specifies the "Rigimesh" flow conditions in

the chamber. Even if the "Rigimesh" Clowrate is zero, it is recommended

that values for the "Rigimesh" stagnation temperature (STGJC),molecular

_9
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weight (E_¢GJC), and specific heat ratio (G_dGJC) be entered in order

to avoid possible execution errors. At present, the CICM program

m_xes the "Rigimesh" flow into the combustion region linearly with

position from the injector face to the axial location specified by

XLMC.

Parameter Card (Card No. 40)

The next control data card specifies the axial step size for the cham-

ber calculations (DELT×C), the chamber droplet formation size and liquid

jet stripping rate parameters (BSPRC and CSPkC), and the minimum axial

distance for DER punched card output (XMINDE).

During execution of the program using the DER option, all IDER flow

zones are executed to an axial location specified by the length of the

longest liquid jet or to the axial distance specified by XMINDE, depend-

in_ on which is larger, before DER punched cards are generated.

Chamber Geometry (Card No. 50, 60, etu.)

The last set of control cards specify the chamber area as a ffmction of

axial distance. Two different methods of input are possible, depending

on the value of NCHAMC. The first method, NCHAMC!O, requires the

cross-sectional area of the injector face (ACSC), chamber length (CLNTC),

chamber contraction ratio (C_NRAC), nozzle angle of convergence (CCANGC),

and the radii of curvature of the beginning of convergence (RCBCC) and

at the throat (RCTC) to describe the combustor area as a function of

length•

90

1974024110-101



With the second method, NCIIA_V,>0, the geometry of the combustor is

specifie_ through the arra_, ACllAHC. At selected axial positions

(XCItA_E), the chamber _-ea is given by ACIIAMC. For axial locations

between the selected values of XCItA_, the prolzram linearly inter-

polate* for the comh,stor area.

CASF INPlffDATA

The final block of data required as input to the CIC_ computer program

comprises the case input data (Table 4 ). If the DER option of the pro-

gram is being utilized, the program requires IDER number of case-input

data blocks.

Comment Cards (Card No. 110 and lll)

Two alphanumeric (A-formatted) comment cards are provided to permit the

user to document the case with such information as injector name, draw-

ing number, element description, propellant combination, nominal chamber

pressure and mixture ratio, date of the computer run, etc.

Indicator Cards (Card No. 120 and 130)

The next two case data cards contain variables (indicators) for:

(]) specifying the number of spray drop sizes at the start plane (NDSCI),

(2) specifying the number of injector elements in the case (NELE_0,

(3) controlling the type of injector cup (or chamber) geometry input

(NCHAH), (4) controlling the type of case analysis _CUP), (4) controlling

the gas expanaion for the first Incremental step (ICPE), (S) controlling
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the input to be read for next case (IREAD), (6) controlling the case

solution printout intervals (M2 and NC_N4), (7) specifying the method

of describin_ the gas expansion around the liquid post (IEXPGL), and

(8) controlling the atomization process (IAT0). A constant pressure

expansion option (ICPE = l) has been incIuded in the CICM computer

program to allow the combustion gas, in the absence of "Rigimesh" flow,

to expand at constant pressure in the chamber. For cup calculations,

this indicator should be set equal to zero. The different options for

expansion around the liquid oxidizer post (IEXPGL) are discussed on

page 22. This indicator is required only for cup calculations.

Case Geometry (Card No. 140, 150, etc.)

The next set of case cards describe the flow area as a function of

axial distance. This set of cards is very similar to the chamber

geometry cards described in the control input data block. For most co-

axial engines, the case geometry will describe the cup geometry. Two

different methods of input are possible depending on the value of NCHAM,

The first method, NCHAN<0, uses the cross-sectional area of the

injector cup or chamber at the upstream end (ACSI), injector cup or cham-

ber length (CLNT), ratio of inlet area to _xit area of the injector

cup or chamber (CONRAT), angle of convergence (negative value specifies

angle of divergence), and the radii of curvature at the beginning of

convergence (RCBC) and at the injector cto cr chamber exit (RCT).
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In the second method, NCItAbt>O,the geometry of the injector cup or cham-

ber is described thro, Rh the array ACII/_t. At selected axial positions

(X('fl/_t), the injector c_lp or chamber cross-sectional area is _iven by

ACftAM. For axial locations between the selected valt_es of XCtt/_I, the

program linearly interpolates for the injector cup or chamber area. For

cup calc_tlations, X('HA_|is the distance from the upstream end of the

injector cup. For chamber calculations, XCÁt/_Iis the di,_tance from the

injector face.

Combustion (;,as Conditions (Card No. 160)

The next card for the case data specifies the combllstion gas, or fuel,

flaw conditions at the computational start plane. The combustion gas,

or fuel, flowrate at the start position (WCGT), the weight mixture ratio

at the start plane of the gas (EbfllCGT), the initial cross-sectional flow

area of the gas (ACGI), the weight mixture ratio of the gas in the mani-

fold (EMRII), and a reference stagnation temperature (STT) and mixture

ratio (/_tRT). For cup calculations, the mixture ratio at the start

plane (EMRCGT)wiil be the same as the mixture ratio in the manifold

For chamber calculations, generally the mixture ratio at the start pla_e

will not be equal to the manifold mixture ratio. The reference tempera-

ture ($1T) and reference mixture ratio (AMRT) are used to update the

equilibrium stagnation gas tables (Table 2 ) to accotmt for differences

in propellant energies. Nominally, these reference values are equal to

the combustion gas, or Fuel, manifold stagnation temperature anO mixture

ratio.
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_!_uid Jet Conditions (Card No. 170)

The next caTd for the case data specifies the liquid jet flow conditions

nl the start plane and droplet i_arameters. The liquid jet flowrate

(WLJI), temperature (TLI), velocity (VLJI), maximum dropsize permitted

in atomization of the liquid jet (D_DMAX), and parameters describing the

droplet formation size (BSPR), and liquid jet stripping rate (CSPR) are

included. If a negative value is input for the liquid jet velocity,

(VLJI), the program will interpret this value to be the liquid jet cross-

sectional area (ALJI = -VLJI). If the local droplet diameter produced

by the stripping process is larger than D_DHAX, stripping c_f the liquid jet

will cease until the local droplet diameter is smaller than D_DHAX.

"Rigimesh" (or Gas Mangle) Conditions

(Card No. 180)

The next case data card specifies the "Rigimesh" flow conditions in the

chamber. This card is very similar to the "Rigimesh" condition card

described in the control input data block. Althoug_ for cup calculations,

the "Rigimesh" flowrate (WGJI) must be set equal to zero, it is recom-

mended that arbitrary values for the stagnation temperature (STGJ), molec-

,,Jar weight (E_/GJ1), and specific heat ratio (C_GJ1) be entered to

_void possible execution errors. At present, the CICH program mixes the

"Rigimesh" flow into the combustion region linearly from the injector

face to the axial location specified by XLM.

94

i

_._-: I iiii i iii ....

_lt"_'T A l"_e"_A ._ .A,_ ., A--



Pressure and Distance Card (Card No. 190)

The next case data card specifies the injector face static pressure

(PCI), e_timated c_;p_tatic pressure drop (CI.IPDP),the tolerance o.1

matchinR the cup exit pressure with the injector face pressures

(CUPDPI,),start plane position CSTX2), axial step size fDFI,TX2),and

the fraction of the chamber cross-sectionalarea represented by this

flow zone case {FCIIA}. For cup calculations, it is recom_nendedthat

the start plane location be chosen as eqvialto one liquid post thick-

ness (STX2 -- tliquid post ) and the axial step size be set equal to

0.005 inch. For chamber calcuIatlons, it is recommended that the

start plane he chosen as the in iector face (,qTX2 -- 0.0) and the axial

step size be set equal to 0.05 in(:h.

Flame Propagation Conditions (Card No. 191)

The next case data card specifies the radial location of the pseudo-

flamefront (RFLAME), the axial location of the start of the flamefront

relative to the injector face (XFI,AI_), and the turbulent flame speed

(VFLAME). It is recommended that the radial location of the flamefront

be set equal to the fuel sleeve radius and the axial location of the

start of the flamefront be set equal to zero (injector face). If IDEK

and NDSCI are both less than or equal to zero, this card is the last

case data card,
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Droplet .Spray groui_ Descrip.tton

{Card No. 200, etc.)

The imxt set of case data cards specify the droplet spray groups present

at the start plane. This set of cards is needed only if NDSCI>0. The

droplet velocity (VODI), temperature (TODI), diameter (DODI), and spray

group flowrate 0fSPRI) are included. Each droplet group is entered on

a separate card, i.e., there will be NDSCI cards in the set.

DER Parameters (Card No. 300, etc.)

The last set of cards for the case input data specify the parameters used

in interfacing the CICM program with the STC section of DER. These cards

are included only if IDER>O. Included is the number of mixing zones

per element (NMIXZ), the number of oxidizer droplet spray groups for

DER punched card output (NGf_), fractions of the total fuel and oxidizer

flowrate for the case in each mixing zone (FFMIX and Ff_MIX), and the

fraction of total spray flowrate for the case in each DER spray group.

Cold flow data are required to d_,fine the numLer of mixing zones and the

fractions of fuel and oxidizer in each zone. This is the last set of

cards in the case input data block.
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PRf_GI_IqO_ffPIlT

|
The output of the CICN cov.9_Jter program is provided a._ the usual t_r.,,_r

printout. ^ savple c_se is included in Appendix C. Input da _ ,,e rrirl'ed

as they are read ;_hich permits both a full documentation of the "o_';'u**_"

r,,n ¢onditions for later analysis and a convenient method to check the

input for errors if unusual resldts are calculated. The input sections

should be examined for each case run to be sure that the intended input

data _'ere actually used.

Puring CICH analysis, data are written out as they are generated. At

selected axial incremental positions, complete gas and propellant spray

group data are printed. Additionally, the percentages of propellants

atomized, vapoti,cd _nd re_eted are listed. At the top of each axial

station printout, two c_mment cards (from the case data input block) are

listed nnd an identification line is written to inform the user whether

the calculation was a cup or chamber case.

Upon completion of the case, the program writes out an identification line

informing the user that the case calculation is finished. For ,'=_calcula-

tions, the program checks to see if the cup exit pressure is equal to the

chamber pressure. If the two pressures are different, the program prints

out this fact and reruns the cup case with a new estimated cup delta

pressure. I
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If the DER option has been specified, after all zone cases have been

executed the program checks to see if each chamber case was continued

to the axial position required for OER punched card output. If any of

the zone chamber cases was terminated before reaching the axial position

required for DER punched card output, the program automatically recal-

culates these zone chamber cases. Upon completion of all zone calcula-

tions, the program lists the DER punched card output.

Upon analyzing all of the input data, the program writes an identification

line informing the user that the program is terminating in the normal
f

fashion, i

t
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I!RRORANAI,YSIS

The most common cause of errors during execution of the CIC_f computer

program are mistakes in the input information. The program contains

certain ._pr.c;al printout._ if input limit._ are exceeded (subroutine

TABIN) and if interpolation beyond reasonable limit¢ of tabulated

table_ is attempted (subroutin._, I,I_£FAC). ll_e usual re_snn for these

error mes_a_es is bad inp:_t datn.

If the model calculations are allowed to proceed to the nozzle throat,

the program may terminate calculations b_fore the throat plane is

reached if the calculated combuction gas velocity exceeds the local

sonic velocity. This early terr, ination will not effect sequenced model

calculations and ._hould not be encountered during execution with tl, e PER

option. The early te:,-.ination can be corrected b_ adjust;.ng the injector

static pressure.

In executing the program with the DER option being used, the user should

verify that the number of DER drople_ spray groups (variable NG_) is the

same for all DER zones. If the number oF spray groups arc different,

the resulting punched card output will be inconsistent.
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CONTENTSOF

SAMPLECASE OUTPUT

Approx. No.
..of Pages

Title Page Identifying Computer Hodel 1

Propellant and Combustion Gas Input Data 42

Control Ipm_t Data 1

Cup Calculation of Element Type #1

1st Axial Pass

Case Input Data (cup) 2
Solution at Selected Axial Stations 18

2nd Axial Pass with Estimated Cup AP Adjusted
Nodi.fied Case Input Data 2
Solution at Selected Axial Stations 18

3rd Axial Pass with Estimated Cup AP Adjusted 20

Chamber Calculation for Single Element Type #I
Case Input Data (chamber) 2
Solution at Selected Axial Stations 18

Cup Calculation of Element Type #2
Ist Axial Pass I0
2)I(I Axial Pass I0

Chamber Calculation for Single Element Type #2 20

Rexam of Chamber Calculation for Single Element Type #I to
Extend Distance to Match That Required for Element Type #2.
Tvpe #2 element Liquid Jet Was Greater Than Distance
Specified in Input (XIqINDE) 22

Gas and Spray Data Which Were Calculated _ Punched for
DER/STC Program 2

I

I,

C-ii
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S_qARY OF SAHPLECASE SPECIFICATION

Injection Elements

Units Type #i Type, #2

I_ Number of Elements - 30 36

Distance From Convergence of Streams
to Injector Face in. 0.10 0.10

2
Cup Cross-Sectional Area in. 0.028055 0.028055

Depth of Cup Flare in. 0 0

2
', Liquid Jet Injection Area in. 0.0088247 0.00860

, 2
i Annular InjectionArea of Gas Stream in. 0.015953 0.013gs3

!'_ Liquid Jet F1owrate ibm/sec 0.220 0.220

Gas Stream Flowrate Ibm/sec 0.003663 0.003663

Gas Stream Mixture Ratio - 0 0

Rigimesh Gas F1owrate Ibm/sec 0 0

Chamber

2
Area at Injector Face 16.86 in.

2
Area at Throat S.12 in. I

Chamber Length 5.0 in.

Chamber Shape Full Taper
(Area change linear with distance)

C-iii
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SAMPLE CASE ELE_T AND C|IA_t GE0_TItY

Injector Elements

Type #1 Type #2

• _° _il

Number of Elements - 30 Number of Elements - 36 I i

Chamber Geometry : ,l.

11.25"
,i

|

!

mm
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